esp-who/components/bus/8080_lcd_esp32s3.c

525 lines
20 KiB
C
Raw Permalink Normal View History

// Copyright 2010-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32S3
#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "esp32s3/rom/lldesc.h"
#include "esp32s3/rom/gpio.h"
#include "driver/gpio.h"
#include "soc/gpio_periph.h"
#include "soc/system_reg.h"
#include "soc/lcd_cam_struct.h"
#include "soc/lcd_cam_reg.h"
#include "soc/gdma_struct.h"
#include "soc/gdma_periph.h"
#include "soc/gdma_reg.h"
#include "i2s_lcd_driver.h"
static const char *TAG = "ESP32S3_LCD";
#define LCD_CHECK(a, str, ret) if (!(a)) { \
ESP_LOGE(TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret); \
}
#define LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE (4000)
#if (ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0))
#define ets_delay_us esp_rom_delay_us
#define portTICK_RATE_MS portTICK_PERIOD_MS
#endif
typedef struct {
uint32_t dma_buffer_size;
uint32_t dma_half_buffer_size;
uint32_t dma_node_buffer_size;
uint32_t dma_node_cnt;
uint32_t dma_half_node_cnt;
lldesc_t *dma;
uint8_t *dma_buffer;
QueueHandle_t event_queue;
uint8_t width;
bool swap_data;
uint8_t dma_num;
intr_handle_t dma_out_intr_handle;
} lcd_cam_obj_t;
typedef struct {
int rs_io_num;
lcd_cam_obj_t *i2s_lcd_obj;
SemaphoreHandle_t mutex;
} i2s_lcd_driver_t;
static void IRAM_ATTR dma_isr(void *arg)
{
BaseType_t woken = pdFALSE;
lcd_cam_obj_t *lcd_cam_obj = (lcd_cam_obj_t *)arg;
uint32_t out_status = GDMA.channel[lcd_cam_obj->dma_num].out.int_st.val;
if (out_status & GDMA_OUT_EOF_CH0_INT_ST) {
GDMA.channel[lcd_cam_obj->dma_num].out.int_clr.val = GDMA_OUT_EOF_CH0_INT_ST;
xQueueSendFromISR(lcd_cam_obj->event_queue, &out_status, &woken);
}
if (woken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static void lcd_dma_set_int(lcd_cam_obj_t *lcd_cam_obj)
{
// Generate a data DMA linked list
for (int x = 0; x < lcd_cam_obj->dma_node_cnt; x++) {
lcd_cam_obj->dma[x].size = lcd_cam_obj->dma_node_buffer_size;
lcd_cam_obj->dma[x].length = lcd_cam_obj->dma_node_buffer_size;
lcd_cam_obj->dma[x].buf = (lcd_cam_obj->dma_buffer + lcd_cam_obj->dma_node_buffer_size * x);
lcd_cam_obj->dma[x].eof = !((x + 1) % lcd_cam_obj->dma_half_node_cnt);
lcd_cam_obj->dma[x].empty = (uint32_t)&lcd_cam_obj->dma[(x + 1) % lcd_cam_obj->dma_node_cnt];
}
lcd_cam_obj->dma[lcd_cam_obj->dma_half_node_cnt - 1].empty = (uint32_t)NULL;
lcd_cam_obj->dma[lcd_cam_obj->dma_node_cnt - 1].empty = (uint32_t)NULL;
}
static void lcd_dma_set_left(lcd_cam_obj_t *lcd_cam_obj, int pos, size_t len)
{
int end_pos = 0, size = 0;
// Processing data length is an integer multiple of lcd_cam_obj->lcd.dma_node_buffer_size
if (len % lcd_cam_obj->dma_node_buffer_size) {
end_pos = (pos % 2) * lcd_cam_obj->dma_half_node_cnt + len / lcd_cam_obj->dma_node_buffer_size;
size = len % lcd_cam_obj->dma_node_buffer_size;
} else {
end_pos = (pos % 2) * lcd_cam_obj->dma_half_node_cnt + len / lcd_cam_obj->dma_node_buffer_size - 1;
size = lcd_cam_obj->dma_node_buffer_size;
}
// Process the tail node to make it a DMA tail
lcd_cam_obj->dma[end_pos].size = size;
lcd_cam_obj->dma[end_pos].length = size;
lcd_cam_obj->dma[end_pos].eof = 1;
lcd_cam_obj->dma[end_pos].empty = (uint32_t)NULL;
}
static void lcd_start(uint32_t dma_num, uint32_t addr, size_t len)
{
while (LCD_CAM.lcd_user.lcd_start);
LCD_CAM.lcd_user.lcd_reset = 1;
LCD_CAM.lcd_user.lcd_reset = 0;
LCD_CAM.lcd_misc.lcd_afifo_reset = 1;
LCD_CAM.lcd_misc.lcd_afifo_reset = 0;
while (GDMA.channel[dma_num].out.link.start);
GDMA.channel[dma_num].out.conf0.val = 0;
GDMA.channel[dma_num].out.conf1.val = 0;
GDMA.channel[dma_num].out.int_clr.val = ~0;
GDMA.channel[dma_num].out.int_ena.val = 0;
GDMA.channel[dma_num].out.conf0.out_rst = 1;
GDMA.channel[dma_num].out.conf0.out_rst = 0;
GDMA.channel[dma_num].out.conf0.outdscr_burst_en = 1;
GDMA.channel[dma_num].out.conf0.out_data_burst_en = 1;
GDMA.channel[dma_num].out.peri_sel.sel = 5;
GDMA.channel[dma_num].out.pri.tx_pri = 1;
GDMA.channel[dma_num].out.int_ena.out_eof = 1;
GDMA.channel[dma_num].out.link.addr = addr;
GDMA.channel[dma_num].out.link.start = 1;
ets_delay_us(1);
LCD_CAM.lcd_user.lcd_update = 1;
LCD_CAM.lcd_user.lcd_start = 1;
}
static void lcd_write_data(lcd_cam_obj_t *lcd_cam_obj, const uint8_t *data, size_t len)
{
int event = 0;
int x = 0, left = 0, cnt = 0;
if (len <= 0) {
ESP_LOGE(TAG, "wrong len!");
return;
}
lcd_dma_set_int(lcd_cam_obj);
uint32_t half_buffer_size = lcd_cam_obj->dma_half_buffer_size;
cnt = len / half_buffer_size;
// Start signal
xQueueSend(lcd_cam_obj->event_queue, &event, 0);
// Process a complete piece of data, ping-pong operation
for (x = 0; x < cnt; x++) {
uint8_t *out = (uint8_t *)lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt].buf;
const uint8_t *in = data;
if (lcd_cam_obj->swap_data) {
LCD_CAM.lcd_user.lcd_8bits_order = 1;
memcpy(out, in, half_buffer_size);
} else {
LCD_CAM.lcd_user.lcd_8bits_order = 0;
memcpy(out, in, half_buffer_size);
}
data += half_buffer_size;
xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_start(lcd_cam_obj->dma_num, ((uint32_t)&lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt]) & 0xfffff, half_buffer_size);
}
left = len % half_buffer_size;
// Process remaining incomplete segment data
if (left) {
uint8_t *out = (uint8_t *)lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt].buf;
const uint8_t *in = data;
cnt = left - left % 2;
if (cnt) {
if (lcd_cam_obj->swap_data) {
LCD_CAM.lcd_user.lcd_8bits_order = 1;
memcpy(out, in, cnt);
} else {
LCD_CAM.lcd_user.lcd_8bits_order = 0;
memcpy(out, in, cnt);
}
}
if (left % 2) {
LCD_CAM.lcd_user.lcd_8bits_order = 0;
out[cnt] = in[cnt];
}
lcd_dma_set_left(lcd_cam_obj, x, left);
xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_start(lcd_cam_obj->dma_num, ((uint32_t)&lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt]) & 0xfffff, left);
}
xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY);
}
static esp_err_t lcd_cam_config(const i2s_lcd_config_t *config, uint32_t dma_num)
{
GDMA.channel[dma_num].out.conf0.val = 0;
GDMA.channel[dma_num].out.conf1.val = 0;
GDMA.channel[dma_num].in.conf0.val = 0;
GDMA.channel[dma_num].in.conf1.val = 0;
GDMA.channel[dma_num].out.int_clr.val = ~0;
GDMA.channel[dma_num].out.int_ena.val = 0;
GDMA.channel[dma_num].in.int_clr.val = ~0;
GDMA.channel[dma_num].in.int_ena.val = 0;
LCD_CAM.lcd_clock.val = 0;
LCD_CAM.lcd_clock.clk_en = 1;
LCD_CAM.lcd_clock.lcd_clk_sel = 3;
LCD_CAM.lcd_clock.lcd_clkm_div_b = 0;
LCD_CAM.lcd_clock.lcd_clkm_div_a = 10;
LCD_CAM.lcd_clock.lcd_clkm_div_num = 2;
LCD_CAM.lcd_clock.lcd_clkcnt_n = 80000000 / config->clk_freq - 1;
LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 0;
LCD_CAM.lcd_clock.lcd_ck_idle_edge = 1; // After lcd_clk_equ_sysclk is set to 1, this bit has no effect
LCD_CAM.lcd_clock.lcd_ck_out_edge = 0; // After lcd_clk_equ_sysclk is set to 1, this bit has no effect
LCD_CAM.lcd_user.val = 0;
LCD_CAM.lcd_user.lcd_2byte_en = (config->data_width == 16) ? 1 : 0;
LCD_CAM.lcd_user.lcd_byte_order = 0;
LCD_CAM.lcd_user.lcd_bit_order = 0;
LCD_CAM.lcd_user.lcd_cmd = 0; // FSM CMD phase
LCD_CAM.lcd_user.lcd_cmd_2_cycle_en = 0; // 2 cycle command
LCD_CAM.lcd_user.lcd_dout = 1; // FSM DOUT phase
LCD_CAM.lcd_user.lcd_dout_cyclelen = 2 - 1;
LCD_CAM.lcd_user.lcd_8bits_order = 0;
LCD_CAM.lcd_user.lcd_always_out_en = 1;
LCD_CAM.lcd_misc.val = 0;
LCD_CAM.lcd_misc.lcd_afifo_threshold_num = 11;
LCD_CAM.lcd_misc.lcd_vfk_cyclelen = 3;
LCD_CAM.lcd_misc.lcd_vbk_cyclelen = 0;
LCD_CAM.lcd_misc.lcd_cd_idle_edge = 1; // idle edge of CD is set to 0
LCD_CAM.lcd_misc.lcd_cd_cmd_set = 1;
LCD_CAM.lcd_misc.lcd_cd_dummy_set = 0;
LCD_CAM.lcd_misc.lcd_cd_data_set = 0; // change when DOUT start
LCD_CAM.lcd_misc.lcd_bk_en = 1;
LCD_CAM.lcd_misc.lcd_afifo_reset = 1;
LCD_CAM.lcd_misc.lcd_afifo_reset = 0;
LCD_CAM.lcd_ctrl.val = 0;
LCD_CAM.lcd_ctrl.lcd_rgb_mode_en = 0;
LCD_CAM.lcd_cmd_val.val = 0; // write command
LCD_CAM.lcd_user.lcd_update = 1;
GDMA.channel[dma_num].out.conf0.out_rst = 1;
GDMA.channel[dma_num].out.conf0.out_rst = 0;
GDMA.channel[dma_num].out.conf0.outdscr_burst_en = 1;
GDMA.channel[dma_num].out.conf0.out_data_burst_en = 1;
GDMA.channel[dma_num].out.peri_sel.sel = (config->data_width == 1) ? 1 : 5;
GDMA.channel[dma_num].out.pri.tx_pri = 1;
GDMA.channel[dma_num].out.int_ena.out_eof = 1;
return ESP_OK;
}
static void lcd_set_pin(const i2s_lcd_config_t *config)
{
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_num_wr], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_num_wr, GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_num_wr, GPIO_FLOATING);
gpio_matrix_out(config->pin_num_wr, LCD_PCLK_IDX, false, false);
for (int i = 0; i < config->data_width; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_data_num[i]], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_data_num[i], GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_data_num[i], GPIO_FLOATING);
gpio_matrix_out(config->pin_data_num[i], LCD_DATA_OUT0_IDX + i, false, false);
}
}
static esp_err_t lcd_dma_config(lcd_cam_obj_t *lcd_cam_obj, const i2s_lcd_config_t *config)
{
int cnt = 0;
if (LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE % 2 != 0) {
ESP_LOGE(TAG, "need 2-byte aligned data length");
return ESP_FAIL;
}
if (config->buffer_size >= LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE * 2) {
lcd_cam_obj->dma_node_buffer_size = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE;
for (cnt = 0; cnt < config->buffer_size - 8; cnt++) { // Find a buffer size that can divide dma_size
if ((config->buffer_size - cnt) % (lcd_cam_obj->dma_node_buffer_size * 2) == 0) {
break;
}
}
lcd_cam_obj->dma_buffer_size = config->buffer_size - cnt;
} else {
lcd_cam_obj->dma_node_buffer_size = config->buffer_size / 2;
lcd_cam_obj->dma_buffer_size = lcd_cam_obj->dma_node_buffer_size * 2;
}
lcd_cam_obj->dma_half_buffer_size = lcd_cam_obj->dma_buffer_size / 2;
lcd_cam_obj->dma_node_cnt = (lcd_cam_obj->dma_buffer_size) / lcd_cam_obj->dma_node_buffer_size; // Number of DMA nodes
lcd_cam_obj->dma_half_node_cnt = lcd_cam_obj->dma_node_cnt / 2;
ESP_LOGI(TAG, "lcd_buffer_size: %"PRIu32", lcd_dma_size: %"PRIu32", lcd_dma_node_cnt: %"PRIu32"", lcd_cam_obj->dma_buffer_size, lcd_cam_obj->dma_node_buffer_size, lcd_cam_obj->dma_node_cnt);
lcd_cam_obj->dma = (lldesc_t *)heap_caps_malloc(lcd_cam_obj->dma_node_cnt * sizeof(lldesc_t), MALLOC_CAP_DMA);
lcd_cam_obj->dma_buffer = (uint8_t *)heap_caps_malloc(lcd_cam_obj->dma_buffer_size * sizeof(uint8_t), MALLOC_CAP_DMA);
return ESP_OK;
}
esp_err_t lcd_cam_deinit(i2s_lcd_driver_t *drv)
{
if (!drv->i2s_lcd_obj) {
return ESP_FAIL;
}
if (drv->i2s_lcd_obj->event_queue) {
vQueueDelete(drv->i2s_lcd_obj->event_queue);
}
if (drv->i2s_lcd_obj->dma) {
free(drv->i2s_lcd_obj->dma);
}
if (drv->i2s_lcd_obj->dma_buffer) {
free(drv->i2s_lcd_obj->dma_buffer);
}
if (drv->i2s_lcd_obj->dma_out_intr_handle) {
esp_intr_free(drv->i2s_lcd_obj->dma_out_intr_handle);
}
GDMA.channel[drv->i2s_lcd_obj->dma_num].out.link.start = 0x0;
free(drv->i2s_lcd_obj);
drv->i2s_lcd_obj = NULL;
return ESP_OK;
}
static esp_err_t lcd_cam_init(i2s_lcd_driver_t *drv, const i2s_lcd_config_t *config)
{
esp_err_t ret = ESP_OK;
lcd_cam_obj_t *lcd_cam_obj = (lcd_cam_obj_t *)heap_caps_calloc(1, sizeof(lcd_cam_obj_t), MALLOC_CAP_DMA);
if (lcd_cam_obj == NULL) {
ESP_LOGE(TAG, "lcd_cam object malloc error");
return ESP_ERR_NO_MEM;
}
drv->i2s_lcd_obj = lcd_cam_obj;
//Enable LCD_CAM periph
if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN) == 0) {
REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
}
if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN) == 0) {
REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
}
for (int x = SOC_GDMA_PAIRS_PER_GROUP - 1; x >= 0; x--) {
if (GDMA.channel[x].out.link.start == 0x0) {
lcd_cam_obj->dma_num = x;
break;
}
if (x == SOC_GDMA_PAIRS_PER_GROUP - 1) {
ESP_LOGE(TAG, "DMA error");
lcd_cam_deinit(drv);
return ESP_FAIL;
}
}
ret |= lcd_cam_config(config, lcd_cam_obj->dma_num);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd_cam config fail!");
lcd_cam_deinit(drv);
return ESP_FAIL;
}
lcd_set_pin(config);
ret |= lcd_dma_config(lcd_cam_obj, config);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd config fail!");
lcd_cam_deinit(drv);
return ESP_FAIL;
}
lcd_cam_obj->event_queue = xQueueCreate(1, sizeof(int));
lcd_cam_obj->width = config->data_width;
lcd_cam_obj->swap_data = config->swap_data;
if (lcd_cam_obj->event_queue == NULL) {
ESP_LOGE(TAG, "lcd config fail!");
lcd_cam_deinit(drv);
return ESP_FAIL;
}
ret |= esp_intr_alloc_intrstatus(gdma_periph_signals.groups[0].pairs[lcd_cam_obj->dma_num].tx_irq_id,
ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM,
(uint32_t)&GDMA.channel[lcd_cam_obj->dma_num].out.int_st, GDMA_OUT_EOF_CH0_INT_ST,
dma_isr, lcd_cam_obj, &lcd_cam_obj->dma_out_intr_handle);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd_cam intr alloc fail!");
lcd_cam_deinit(drv);
return ESP_FAIL;
}
ESP_LOGI(TAG, "lcd init ok");
return ESP_OK;
}
/**< Public functions */
i2s_lcd_handle_t i2s_lcd_driver_init(const i2s_lcd_config_t *config)
{
LCD_CHECK(NULL != config, "config pointer invalid", NULL);
LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_num_wr), "GPIO WR invalid", NULL);
LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_num_rs), "GPIO RS invalid", NULL);
LCD_CHECK(config->data_width > 0 && config->data_width <= 16, "Bit width out of range", NULL);
LCD_CHECK(0 == (config->data_width % 8), "Bit width must be a multiple of 8", NULL);
uint64_t pin_mask = 0;
for (size_t i = 0; i < config->data_width; i++) {
uint64_t mask = 1ULL << config->pin_data_num[i];
LCD_CHECK(!(pin_mask & mask), "Data bus GPIO has a duplicate", NULL);
LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_data_num[i]), "Data bus gpio invalid", NULL);
pin_mask |= mask;
}
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)heap_caps_malloc(sizeof(i2s_lcd_driver_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
LCD_CHECK(NULL != i2s_lcd_drv, "Error malloc handle of i2s lcd driver", NULL);
esp_err_t ret = lcd_cam_init(i2s_lcd_drv, config);
if (ESP_OK != ret) {
ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "i2s lcd driver initialize failed");
heap_caps_free(i2s_lcd_drv);
return NULL;
}
i2s_lcd_drv->mutex = xSemaphoreCreateMutex();
if (i2s_lcd_drv->mutex == NULL) {
ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "lcd create mutex failed");
lcd_cam_deinit(i2s_lcd_drv);
heap_caps_free(i2s_lcd_drv);
return NULL;
}
if (config->pin_num_cs >= 0) {
gpio_pad_select_gpio(config->pin_num_cs);
gpio_set_direction(config->pin_num_cs, GPIO_MODE_OUTPUT);
gpio_set_level(config->pin_num_cs, 0);
}
gpio_pad_select_gpio(config->pin_num_rs);
gpio_set_direction(config->pin_num_rs, GPIO_MODE_OUTPUT);
gpio_set_level(config->pin_num_rs, LCD_DATA_LEV);
i2s_lcd_drv->rs_io_num = config->pin_num_rs;
return (i2s_lcd_handle_t)i2s_lcd_drv;
}
esp_err_t i2s_lcd_driver_deinit(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
lcd_cam_deinit(i2s_lcd_drv);
vSemaphoreDelete(i2s_lcd_drv->mutex);
heap_caps_free(handle);
return ESP_OK;
}
esp_err_t i2s_lcd_write_data(i2s_lcd_handle_t handle, uint16_t data)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&data, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1);
return ESP_OK;
}
esp_err_t i2s_lcd_write_cmd(i2s_lcd_handle_t handle, uint16_t cmd)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_CMD_LEV);
lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&cmd, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_DATA_LEV);
return ESP_OK;
}
esp_err_t i2s_lcd_write_command(i2s_lcd_handle_t handle, const uint8_t *cmd, uint32_t length)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_CMD_LEV);
lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, cmd, length);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_DATA_LEV);
return ESP_OK;
}
esp_err_t i2s_lcd_write(i2s_lcd_handle_t handle, const uint8_t *data, uint32_t length)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, data, length);
return ESP_OK;
}
esp_err_t i2s_lcd_acquire(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
BaseType_t ret = xSemaphoreTake(i2s_lcd_drv->mutex, portMAX_DELAY);
LCD_CHECK(pdTRUE == ret, "Take semaphore failed", ESP_FAIL);
return ESP_OK;
}
esp_err_t i2s_lcd_release(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
BaseType_t ret = xSemaphoreGive(i2s_lcd_drv->mutex);
LCD_CHECK(pdTRUE == ret, "Give semaphore failed", ESP_FAIL);
return ESP_OK;
}
#endif