Feature/esp sr
parent
1911942083
commit
28c88f8e0e
|
@ -4,4 +4,7 @@ EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/image_util
|
|||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/face_detection
|
||||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/face_recognition
|
||||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/object_detection
|
||||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/lib
|
||||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/wake_word_engine
|
||||
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/acoustic_algorithm
|
||||
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
set(COMPONENT_SRCS dummy.c)
|
||||
set(COMPONENT_ADD_INCLUDEDIRS
|
||||
lib/include
|
||||
wake_word_engine/include
|
||||
acoustic_algorithm/include
|
||||
)
|
||||
|
||||
|
||||
register_component()
|
||||
|
||||
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/lib")
|
||||
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/wake_word_engine")
|
||||
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/acoustic_algorithm")
|
||||
target_link_libraries(${COMPONENT_TARGET}
|
||||
dl_lib_sr
|
||||
c_speech_features
|
||||
wakenet
|
||||
hilexin_wn5
|
||||
esp_audio_processor
|
||||
)
|
|
@ -0,0 +1,10 @@
|
|||
PROJECT_NAME := esp_sr
|
||||
|
||||
MODULE_PATH := $(abspath $(shell pwd))
|
||||
|
||||
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/lib
|
||||
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/wake_word_engine
|
||||
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/acoustic_algorithm
|
||||
|
||||
include $(IDF_PATH)/make/project.mk
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
COMPONENT_ADD_INCLUDEDIRS := include
|
||||
|
||||
COMPONENT_SRCDIRS := .
|
||||
|
||||
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
|
||||
|
||||
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
|
||||
|
||||
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
|
||||
|
||||
ALL_LIB_FILES += $(LIB_FILES)
|
|
@ -0,0 +1,76 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License
|
||||
#ifndef _ESP_AEC_H_
|
||||
#define _ESP_AEC_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define USE_AEC_FFT // Not kiss_fft
|
||||
#define AEC_SAMPLE_RATE 16000 // Only Support 16000Hz
|
||||
#define AEC_FRAME_LENGTH_MS 16 // Only support 16ms
|
||||
#define AEC_FILTER_LENGTH 1200 // Number of samples of echo to cancel
|
||||
|
||||
typedef void* aec_handle_t;
|
||||
|
||||
/**
|
||||
* @brief Creates an instance to the AEC structure.
|
||||
*
|
||||
* @param sample_rate The Sampling frequency (Hz) can be 8000, 16000.
|
||||
*
|
||||
* @param frame_length The length of the audio processing can be 10ms, 20ms, 30ms, default: 30.
|
||||
*
|
||||
* @param filter_length Number of samples of echo to cancel.
|
||||
*
|
||||
* @return
|
||||
* - NULL: Create failed
|
||||
* - Others: The instance of AEC
|
||||
*/
|
||||
aec_handle_t aec_create(int sample_rate, int frame_length, int filter_length);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Performs echo cancellation a frame, based on the audio sent to the speaker and frame from mic.
|
||||
*
|
||||
* @param inst The instance of AEC.
|
||||
*
|
||||
* @param indata An array of 16-bit signed audio samples from mic.
|
||||
*
|
||||
* @param refdata An array of 16-bit signed audio samples sent to the speaker.
|
||||
*
|
||||
* @param outdata Returns near-end signal with echo removed.
|
||||
*
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void aec_process(aec_handle_t inst, int16_t *indata, int16_t *refdata, int16_t *outdata);
|
||||
|
||||
/**
|
||||
* @brief Free the AEC instance
|
||||
*
|
||||
* @param inst The instance of AEC.
|
||||
*
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void aec_destroy(aec_handle_t inst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#endif //_ESP_AEC_H_
|
|
@ -0,0 +1,31 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License
|
||||
#ifndef _ESP_AGC_H_
|
||||
#define _ESP_AGC_H_
|
||||
|
||||
////all positive value is valid, negective is error
|
||||
typedef enum {
|
||||
ESP_AGC_SUCCESS = 0, ////success
|
||||
ESP_AGC_FAIL = -1, ////agc fail
|
||||
ESP_AGC_SAMPLE_RATE_ERROR = -2, ///sample rate can be only 8khz, 16khz, 32khz
|
||||
ESP_AGC_FRAME_SIZE_ERROR = -3, ////the input frame size should be only 10ms, so should together with sample-rate to get the frame size
|
||||
} ESP_AGE_ERR;
|
||||
|
||||
|
||||
void *esp_agc_open(int agc_mode, int sample_rate);
|
||||
void set_agc_config(void *agc_handle, int gain_dB, int limiter_enable, int target_level_dbfs);
|
||||
int esp_agc_process(void *agc_handle, short *in_pcm, short *out_pcm, int frame_size, int sample_rate);
|
||||
void esp_agc_clse(void *agc_handle);
|
||||
|
||||
#endif // _ESP_AGC_H_
|
|
@ -0,0 +1,70 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License
|
||||
#ifndef _ESP_NS_H_
|
||||
#define _ESP_NS_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define NS_FRAME_LENGTH_MS 30 //Supports 10ms, 20ms, 30ms
|
||||
|
||||
/**
|
||||
* The Sampling frequency (Hz) must be 16000Hz
|
||||
*/
|
||||
|
||||
typedef void* ns_handle_t;
|
||||
|
||||
/**
|
||||
* @brief Creates an instance to the NS structure.
|
||||
*
|
||||
* @param frame_length_ms The length of the audio processing can be 10ms, 20ms, 30ms.
|
||||
*
|
||||
* @return
|
||||
* - NULL: Create failed
|
||||
* - Others: The instance of NS
|
||||
*/
|
||||
ns_handle_t ns_create(int frame_length_ms);
|
||||
|
||||
/**
|
||||
* @brief Feed samples of an audio stream to the NS and get the audio stream after Noise suppression.
|
||||
*
|
||||
* @param inst The instance of NS.
|
||||
*
|
||||
* @param indata An array of 16-bit signed audio samples.
|
||||
*
|
||||
* @param outdata An array of 16-bit signed audio samples after noise suppression.
|
||||
*
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void ns_process(ns_handle_t inst, int16_t *indata, int16_t *outdata);
|
||||
|
||||
/**
|
||||
* @brief Free the NS instance
|
||||
*
|
||||
* @param inst The instance of NS.
|
||||
*
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void ns_destroy(ns_handle_t inst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#endif //_ESP_NS_H_
|
|
@ -0,0 +1,104 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License
|
||||
#ifndef _ESP_VAD_H_
|
||||
#define _ESP_VAD_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define SAMPLE_RATE_HZ 16000 //Supports 32000, 16000, 8000
|
||||
#define VAD_FRAME_LENGTH_MS 30 //Supports 10ms, 20ms, 30ms
|
||||
|
||||
/**
|
||||
* @brief Sets the VAD operating mode. A more aggressive (higher mode) VAD is more
|
||||
* restrictive in reporting speech.
|
||||
*/
|
||||
typedef enum {
|
||||
VAD_MODE_0 = 0,
|
||||
VAD_MODE_1,
|
||||
VAD_MODE_2,
|
||||
VAD_MODE_3,
|
||||
VAD_MODE_4
|
||||
} vad_mode_t;
|
||||
|
||||
typedef enum {
|
||||
VAD_SILENCE = 0,
|
||||
VAD_SPEECH
|
||||
} vad_state_t;
|
||||
|
||||
typedef void* vad_handle_t;
|
||||
|
||||
/**
|
||||
* @brief Creates an instance to the VAD structure.
|
||||
*
|
||||
* @param vad_mode Sets the VAD operating mode.
|
||||
*
|
||||
* @param sample_rate_hz The Sampling frequency (Hz) can be 32000, 16000, 8000, default: 16000.
|
||||
*
|
||||
* @param one_frame_ms The length of the audio processing can be 10ms, 20ms, 30ms, default: 30.
|
||||
*
|
||||
* @return
|
||||
* - NULL: Create failed
|
||||
* - Others: The instance of VAD
|
||||
*/
|
||||
vad_handle_t vad_create(vad_mode_t vad_mode, int sample_rate_hz, int one_frame_ms);
|
||||
|
||||
/**
|
||||
* @brief Feed samples of an audio stream to the VAD and check if there is someone speaking.
|
||||
*
|
||||
* @param inst The instance of VAD.
|
||||
*
|
||||
* @param data An array of 16-bit signed audio samples.
|
||||
*
|
||||
* @return
|
||||
* - VAD_SILENCE if no voice
|
||||
* - VAD_SPEECH if voice is detected
|
||||
*
|
||||
*/
|
||||
vad_state_t vad_process(vad_handle_t inst, int16_t *data);
|
||||
|
||||
/**
|
||||
* @brief Free the VAD instance
|
||||
*
|
||||
* @param inst The instance of VAD.
|
||||
*
|
||||
* @return None
|
||||
*
|
||||
*/
|
||||
void vad_destroy(vad_handle_t inst);
|
||||
|
||||
/*
|
||||
* Programming Guide:
|
||||
*
|
||||
* @code{c}
|
||||
* vad_handle_t vad_inst = vad_create(VAD_MODE_3, SAMPLE_RATE_HZ, VAD_FRAME_LENGTH_MS); // Creates an instance to the VAD structure.
|
||||
*
|
||||
* while (1) {
|
||||
* //Use buffer to receive the audio data from MIC.
|
||||
* vad_state_t vad_state = vad_process(vad_inst, buffer); // Feed samples to the VAD process and get the result.
|
||||
* }
|
||||
*
|
||||
* vad_destroy(vad_inst); // Free the VAD instance at the end of whole VAD process
|
||||
*
|
||||
* @endcode
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#endif //_ESP_VAD_H_
|
Binary file not shown.
|
@ -0,0 +1,16 @@
|
|||
|
||||
COMPONENT_ADD_INCLUDEDIRS := lib/include \
|
||||
wake_word_engine/include \
|
||||
acoustic_algorithm/include \
|
||||
|
||||
|
||||
LIB_FILES := $(shell ls $(COMPONENT_PATH)/wake_word_engine/lib*.a) \
|
||||
$(shell ls $(COMPONENT_PATH)/lib/lib*.a) \
|
||||
$(shell ls $(COMPONENT_PATH)/acoustic_algorithm/lib*.a) \
|
||||
|
||||
LIBS := $(patsubst lib%.a,-l%,$(LIB_FILES))
|
||||
|
||||
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/lib \
|
||||
-L$(COMPONENT_PATH)/wake_word_engine \
|
||||
-L$(COMPONENT_PATH)/acoustic_algorithm \
|
||||
$(LIBS)
|
|
@ -0,0 +1,11 @@
|
|||
COMPONENT_ADD_INCLUDEDIRS := include
|
||||
|
||||
COMPONENT_SRCDIRS := .
|
||||
|
||||
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
|
||||
|
||||
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
|
||||
|
||||
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
|
||||
|
||||
ALL_LIB_FILES += $(LIB_FILES)
|
|
@ -0,0 +1,328 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_H
|
||||
#define DL_LIB_H
|
||||
|
||||
#include "dl_lib_matrix.h"
|
||||
#include "dl_lib_matrixq.h"
|
||||
|
||||
|
||||
typedef int padding_state;
|
||||
/**
|
||||
* @brief Does a fast version of the exp() operation on a floating point number.
|
||||
*
|
||||
* As described in https://codingforspeed.com/using-faster-exponential-approximation/
|
||||
* Should be good til an input of 5 or so with a steps factor of 8.
|
||||
*
|
||||
* @param in Floating point input
|
||||
* @param steps Approximation steps. More is more precise. 8 or 10 should be good enough for most purposes.
|
||||
* @return Exp()'ed output
|
||||
*/
|
||||
fptp_t fast_exp(double x, int steps);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Does a softmax operation on a matrix.
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_softmax(const dl_matrix2d_t *in, dl_matrix2d_t *out);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Does a softmax operation on a quantized matrix.
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_softmax_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
|
||||
|
||||
/**
|
||||
* @brief Does a sigmoid operation on a floating point number
|
||||
*
|
||||
* @param in Floating point input
|
||||
* @return Sigmoid output
|
||||
*/
|
||||
|
||||
fptp_t dl_sigmoid_op(fptp_t in);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Does a sigmoid operation on a matrix.
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_sigmoid(const dl_matrix2d_t *in, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on a floating point number
|
||||
*
|
||||
* @param in Floating point input number
|
||||
* @return Tanh value
|
||||
*/
|
||||
fptp_t dl_tanh_op(fptp_t v);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on a matrix.
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_tanh(const dl_matrix2d_t *in, dl_matrix2d_t *out);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Does a relu (Rectifier Linear Unit) operation on a floating point number
|
||||
*
|
||||
* @param in Floating point input
|
||||
* @param clip If value is higher than this, it will be clipped to this value
|
||||
* @return Relu output
|
||||
*/
|
||||
fptp_t dl_relu_op(fptp_t in, fptp_t clip);
|
||||
|
||||
/**
|
||||
* @brief Does a ReLu operation on a matrix.
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param clip If values are higher than this, they will be clipped to this value
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_relu(const dl_matrix2d_t *in, fptp_t clip, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Fully connected layer operation
|
||||
*
|
||||
* @param in Input vector
|
||||
* @param weight Weights of the neurons
|
||||
* @param bias Biases for the neurons. Can be NULL if a bias of 0 is required.
|
||||
* @param out Output array. Outputs are placed here. Needs to be an initialized, weight->w by in->h in size, matrix.
|
||||
*/
|
||||
void dl_fully_connect_layer(const dl_matrix2d_t *in, const dl_matrix2d_t *weight, const dl_matrix2d_t *bias, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Pre-calculate the sqrtvari variable for the batch_normalize function.
|
||||
* The sqrtvari matrix depends on the variance and epsilon values, which normally are constant. Hence,
|
||||
* this matrix only needs to be calculated once. This function does that.
|
||||
*
|
||||
* @param
|
||||
* @return
|
||||
*/
|
||||
void dl_batch_normalize_get_sqrtvar(const dl_matrix2d_t *variance, fptp_t epsilon, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Batch-normalize a matrix
|
||||
*
|
||||
* @param m The matrix to normalize
|
||||
* @param offset Offset matrix
|
||||
* @param scale Scale matrix
|
||||
* @param mean Mean matrix
|
||||
* @param sqrtvari Matrix precalculated using dl_batch_normalize_get_sqrtvar
|
||||
* @return
|
||||
*/
|
||||
void dl_batch_normalize(dl_matrix2d_t *m, const dl_matrix2d_t *offset, const dl_matrix2d_t *scale,
|
||||
const dl_matrix2d_t *mean, const dl_matrix2d_t *sqrtvari);
|
||||
|
||||
/**
|
||||
* @brief Do a basic LSTM layer pass.
|
||||
*
|
||||
* @warning Returns state_h pointer, so do not free result.
|
||||
|
||||
* @param in Input vector
|
||||
* @param state_c Internal state of the LSTM network
|
||||
* @param state_h Internal state (previous output values) of the LSTM network
|
||||
* @param weights Weights for the neurons
|
||||
* @param bias Bias for the neurons. Can be NULL if no bias is required
|
||||
* @return Output values of the neurons
|
||||
*/
|
||||
dl_matrix2d_t *dl_basic_lstm_layer(const dl_matrix2d_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
|
||||
const dl_matrix2d_t *weight, const dl_matrix2d_t *bias);
|
||||
|
||||
/**
|
||||
* @brief Do a basic LSTM layer pass, partial quantized version.
|
||||
* This LSTM function accepts 16-bit fixed-point weights and 32-bit float-point bias.
|
||||
*
|
||||
* @warning Returns state_h pointer, so do not free result.
|
||||
|
||||
* @param in Input vector
|
||||
* @param state_c Internal state of the LSTM network
|
||||
* @param state_h Internal state (previous output values) of the LSTM network
|
||||
* @param weights Weights for the neurons, need to be quantised
|
||||
* @param bias Bias for the neurons. Can be NULL if no bias is required
|
||||
* @return Output values of the neurons
|
||||
*/
|
||||
dl_matrix2dq_t *dl_basic_lstm_layer_quantised_weights(const dl_matrix2d_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
|
||||
const dl_matrix2dq_t *weight, const dl_matrix2d_t *bias);
|
||||
|
||||
/**
|
||||
* @brief Do a fully-connected layer pass, fully-quantized version.
|
||||
*
|
||||
* @param in Input vector
|
||||
* @param weight Weights of the neurons
|
||||
* @param bias Bias values of the neurons. Can be NULL if no bias is needed.
|
||||
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
|
||||
* @return Output values of the neurons
|
||||
*/
|
||||
void dl_fully_connect_layer_q(const dl_matrix2dq_t *in, const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, dl_matrix2dq_t *out, int shift);
|
||||
|
||||
/**
|
||||
* @brief Do a basic LSTM layer pass, fully-quantized version
|
||||
*
|
||||
* @warning Returns state_h pointer, so do not free result.
|
||||
|
||||
* @param in Input vector
|
||||
* @param state_c Internal state of the LSTM network
|
||||
* @param state_h Internal state (previous output values) of the LSTM network
|
||||
* @param weights Weights for the neurons
|
||||
* @param bias Bias for the neurons. Can be NULL if no bias is required
|
||||
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
|
||||
* @return Output values of the neurons
|
||||
*/
|
||||
dl_matrix2dq_t *dl_basic_lstm_layer_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *state_c, dl_matrix2dq_t *state_h,
|
||||
const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, int shift);
|
||||
|
||||
/**
|
||||
* @brief Batch-normalize a matrix, fully-quantized version
|
||||
*
|
||||
* @param m The matrix to normalize
|
||||
* @param offset Offset matrix
|
||||
* @param scale Scale matrix
|
||||
* @param mean Mean matrix
|
||||
* @param sqrtvari Matrix precalculated using dl_batch_normalize_get_sqrtvar
|
||||
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
|
||||
* @return
|
||||
*/
|
||||
void dl_batch_normalize_q(dl_matrix2dq_t *m, const dl_matrix2dq_t *offset, const dl_matrix2dq_t *scale,
|
||||
const dl_matrix2dq_t *mean, const dl_matrix2dq_t *sqrtvari, int shift);
|
||||
|
||||
/**
|
||||
* @brief Does a relu (Rectifier Linear Unit) operation on a fixed-point number
|
||||
* This accepts and returns fixed-point 32-bit number with the last 15 bits being the bits after the decimal
|
||||
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
|
||||
*
|
||||
* @param in Fixed-point input
|
||||
* @param clip If value is higher than this, it will be clipped to this value
|
||||
* @return Relu output
|
||||
*/
|
||||
qtp_t dl_relu_q_op(qtp_t in, qtp_t clip);
|
||||
|
||||
/**
|
||||
* @brief Does a ReLu operation on a matrix, quantized version
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param clip If values are higher than this, they will be clipped to this value
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_relu_q(const dl_matrix2dq_t *in, fptp_t clip, dl_matrix2dq_t *out);
|
||||
|
||||
/**
|
||||
* @brief Does a sigmoid operation on a fixed-point number.
|
||||
* This accepts and returns a fixed-point 32-bit number with the last 15 bits being the bits after the decimal
|
||||
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
|
||||
*
|
||||
* @param in Fixed-point input
|
||||
* @return Sigmoid output
|
||||
*/
|
||||
int dl_sigmoid_op_q(const int in);
|
||||
|
||||
/**
|
||||
* @brief Does a sigmoid operation on a matrix, quantized version
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_sigmoid_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on a matrix, quantized version
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_tanh_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on a fixed-point number.
|
||||
* This accepts and returns a fixed-point 32-bit number with the last 15 bits being the bits after the decimal
|
||||
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
|
||||
*
|
||||
* @param in Fixed-point input
|
||||
* @return tanh output
|
||||
*/
|
||||
int dl_tanh_op_q(int v);
|
||||
|
||||
/**
|
||||
* @brief Filter out the number greater than clip in the matrix, quantized version
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param clip If values are higher than this, they will be clipped to this value
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_minimum(const dl_matrix2d_t *in, fptp_t clip, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Filter out the number greater than clip in the matrix, float version
|
||||
*
|
||||
* @param in Input matrix
|
||||
* @param clip If values are higher than this, they will be clipped to this value
|
||||
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
|
||||
*/
|
||||
void dl_minimum_q(const dl_matrix2dq_t *in, fptp_t clip, dl_matrix2dq_t *out);
|
||||
/**
|
||||
* @brief Do a basic CNN layer pass.
|
||||
*
|
||||
* @Warning This just supports the single channel input image, and the output is single row matrix.
|
||||
That is to say, the height of output is 1, and the weight of output is out_channels*out_image_width*out_image_height
|
||||
*
|
||||
* @param in Input single channel image
|
||||
* @param weight Weights of the neurons, weight->w = out_channels, weight->h = filter_width*filter_height
|
||||
* @param bias Bias for the CNN layer.
|
||||
* @param filter_height The height of convolution kernel
|
||||
* @param filter_width The width of convolution kernel
|
||||
* @param out_channels The number of output channels of convolution kernel
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param pad One of `"VALID"` or `"SAME"`, 0 is "VALID" and the other is "SAME"
|
||||
* @param out The result of CNN layer, out->h=1.
|
||||
* @return The result of CNN layer.
|
||||
*/
|
||||
dl_matrix2d_t *dl_basic_conv_layer(const dl_matrix2d_t *in, const dl_matrix2d_t *weight, const dl_matrix2d_t *bias, int filter_width, int filter_height,
|
||||
const int out_channels, const int stride_x, const int stride_y, padding_state pad, const dl_matrix2d_t* out);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Do a basic CNN layer pass, quantised wersion.
|
||||
*
|
||||
* @Warning This just supports the single channel input image, and the output is single row matrix.
|
||||
That is to say, the height of output is 1, and the weight of output is out_channels*out_image_width*out_image_height
|
||||
*
|
||||
* @param in Input single channel image
|
||||
* @param weight Weights of the neurons, weight->w = out_channels, weight->h = filter_width*filter_height,
|
||||
* @param bias Bias of the neurons.
|
||||
* @param filter_height The height of convolution kernel
|
||||
* @param filter_width The width of convolution kernel
|
||||
* @param out_channels The number of output channels of convolution kernel
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param pad One of `"VALID"` or `"SAME"`, 0 is "VALID" and the other is "SAME"
|
||||
* @param out The result of CNN layer, out->h=1
|
||||
* @return The result of CNN layer
|
||||
*/
|
||||
dl_matrix2d_t *dl_basic_conv_layer_quantised_weight(const dl_matrix2d_t *in, const dl_matrix2dq_t *weight, const dl_matrix2d_t *bias, int filter_width, int filter_height,
|
||||
const int out_channels, const int stride_x, const int stride_y, padding_state pad, const dl_matrix2d_t* out);
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_COEFGETTER_IF_H
|
||||
#define DL_LIB_COEFGETTER_IF_H
|
||||
|
||||
#include "dl_lib_matrix.h"
|
||||
#include "dl_lib_matrixq.h"
|
||||
|
||||
//Set this if the coefficient requested is a batch-normalization popvar matrix which needs to be preprocessed by
|
||||
//dl_batch_normalize_get_sqrtvar first.
|
||||
#define COEF_GETTER_HINT_BNVAR (1<<0)
|
||||
|
||||
/*
|
||||
This struct describes the basic information of model data:
|
||||
word_num: the number of wake words or speech commands
|
||||
word_list: the name list of wake words or speech commands
|
||||
thres_list: the threshold list of wake words or speech commands
|
||||
info_str: the string used to reflect the version and information of model data
|
||||
which consist of the architecture of network, the version of model data, wake words and their threshold
|
||||
*/
|
||||
typedef struct {
|
||||
int word_num;
|
||||
char **word_list;
|
||||
int *win_list;
|
||||
float *thresh_list;
|
||||
char *info_str;
|
||||
} model_info_t;
|
||||
|
||||
/*
|
||||
Alphabet struct describes the basic grapheme or phoneme.
|
||||
item_num: the number of baisc item(grapheme or phonemr)
|
||||
items: the list of basic item
|
||||
*/
|
||||
typedef struct {
|
||||
int item_num;
|
||||
char **items;
|
||||
}alphabet_t;
|
||||
|
||||
/*
|
||||
This struct describes a generic coefficient getter: a way to get the constant coefficients needed for a neural network.
|
||||
For the two getters, the name describes the name of the coefficient matrix, usually the same as the Numpy filename the
|
||||
coefficient was originally stored in. The arg argument can be used to optionally pass an additional user-defined argument
|
||||
to the getter (e.g. the directory to look for files in the case of the Numpy file loader getter). The hint argument
|
||||
is a bitwise OR of the COEF_GETTER_HINT_* flags or 0 when none is needed. Use the free_f/free_q functions to release the
|
||||
memory for the returned matrices, when applicable.
|
||||
*/
|
||||
typedef struct {
|
||||
const dl_matrix2d_t* (*getter_f)(const char *name, void *arg, int hint);
|
||||
const dl_matrix2dq_t* (*getter_q)(const char *name, void *arg, int hint);
|
||||
void (*free_f)(const dl_matrix2d_t *m);
|
||||
void (*free_q)(const dl_matrix2dq_t *m);
|
||||
const model_info_t* (*getter_info)(void *arg);
|
||||
const alphabet_t* (*getter_alphabet)(void *arg);
|
||||
} model_coeff_getter_t;
|
||||
|
||||
#endif
|
|
@ -0,0 +1,164 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_CONV_QUEUE_H
|
||||
#define DL_LIB_CONV_QUEUE_H
|
||||
|
||||
|
||||
#include "dl_lib_matrix.h"
|
||||
typedef float fptp_t;
|
||||
|
||||
|
||||
//Flags for matrices
|
||||
#define DL_MF_FOREIGNDATA (1<<0) /*< Matrix *item data actually points to another matrix and should not be freed */
|
||||
|
||||
//Float convolution FIFO queue.
|
||||
typedef struct {
|
||||
int n; /*< the length of queue */
|
||||
int c; /*< the channel number of queue element*/
|
||||
int front; /*< the front(top) position of queue */
|
||||
int flag; /*< not used*/
|
||||
fptp_t *item; /*< Pointer to item array */
|
||||
} dl_conv_queue_t;
|
||||
|
||||
/**
|
||||
* @brief Allocate a convolution queue
|
||||
*
|
||||
* @param n The length of queue
|
||||
* @param c The channel number of elements in the queue
|
||||
* @return The convolution queue, or NULL if out of memory
|
||||
*/
|
||||
dl_conv_queue_t *dl_conv_queue_alloc(int n, int c);
|
||||
|
||||
/**
|
||||
* @brief Free a convolution queue
|
||||
*
|
||||
* @param cq The convolution queue to free
|
||||
*/
|
||||
void dl_conv_queue_free(dl_conv_queue_t *cq);
|
||||
|
||||
void dl_conv_to_matrix2d(dl_conv_queue_t *cq, dl_matrix2d_t* out);
|
||||
|
||||
/**
|
||||
* @brief Move the front pointer of queue forward,
|
||||
the First(oldest) element become the last(newest) element,
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @return Pointer of oldest element
|
||||
*/
|
||||
fptp_t *dl_conv_queue_pop(dl_conv_queue_t *cq);
|
||||
|
||||
/**
|
||||
* @brief Remove the oldest element, then insert the input element at the end of queue
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @param item The new element
|
||||
*/
|
||||
void dl_conv_queue_push(dl_conv_queue_t *cq, fptp_t* item);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the pointer of element in the queue by offset
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
fptp_t *dl_get_queue_item(dl_conv_queue_t *cq, int offset);
|
||||
|
||||
/**
|
||||
* @brief Does a sigmoid operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, and does a sigmoid operation
|
||||
* by this pointer, then return the pointer
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
fptp_t *dl_sigmoid_step(dl_conv_queue_t *cq, int offset);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, and does a tanh operation
|
||||
* by this pointer, then return the pointer
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
fptp_t *dl_tanh_step(dl_conv_queue_t *cq, int offset);
|
||||
|
||||
/**
|
||||
* @brief Does a softmax operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, and does a softmax operation
|
||||
* by this pointer, then return the pointer
|
||||
*
|
||||
* @param cq Input convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
fptp_t *dl_softmax_step(dl_conv_queue_t *cq, int offset);
|
||||
|
||||
fptp_t *dl_relu_step(dl_conv_queue_t *cq, int offset);
|
||||
fptp_t *dl_relu_look(dl_matrix2d_t *cq, int offset);
|
||||
dl_matrix2d_t *dl_matrix_concat1(const dl_conv_queue_t *a, const dl_matrix2d_t *b);
|
||||
dl_matrix2d_t *dl_basic_lstm_layer1(const dl_conv_queue_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
|
||||
const dl_matrix2d_t *weight, const dl_matrix2d_t *bias);
|
||||
/**
|
||||
* @brief Fast implement for 1D atrous convolution (a.k.a. convolution with holes or dilated convolution)
|
||||
* based on convolution queue.
|
||||
*
|
||||
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
|
||||
* is first element of output queue and should not be freed separately.
|
||||
*
|
||||
* @param in Input convolution queue
|
||||
* @param out Output convolution queue
|
||||
* @param rate A positive int, the stride with which we sample input value
|
||||
* @param size A positive int, the size of 1D-filter
|
||||
* @param kernel The kernel matrix of filter
|
||||
* @param bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
|
||||
* @return The result of atrous convolution
|
||||
*/
|
||||
fptp_t *dl_atrous_conv1d_step(dl_conv_queue_t *in, dl_conv_queue_t *out, int rate, int size,
|
||||
dl_matrix2d_t* kernel, dl_matrix2d_t* bias);
|
||||
fptp_t *dl_look_conv_step(dl_conv_queue_t *in, dl_matrix2d_t *out, int rate, int size,
|
||||
dl_matrix2d_t* kernel, dl_matrix2d_t* bias);
|
||||
|
||||
/**
|
||||
* @brief Fast implement of dilation layer as follows
|
||||
*
|
||||
* |-> [gate(sigmoid)] -|
|
||||
* input - | |-> (*) - output
|
||||
* |-> [filter(tanh)] -|
|
||||
*
|
||||
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
|
||||
* is first element of output queue and should not be freed separately.
|
||||
*
|
||||
* @param in Input convolution queue
|
||||
* @param out Output convolution queue
|
||||
* @param rate A positive int, the stride with which we sample input value
|
||||
* @param size A positive int, the size of 1D-filter
|
||||
* @param filter_kernel The kernel matrix of filter
|
||||
* @param filter_bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
|
||||
* @param gate_kernel The kernel matrix of gate
|
||||
* @param gate_bias The bias matrix of gate. Can be NULL if a bias of 0 is required.
|
||||
* @return The result of dilation layer
|
||||
*/
|
||||
fptp_t *dl_dilation_layer(dl_conv_queue_t *in, dl_conv_queue_t *out, int rate, int size,
|
||||
dl_matrix2d_t* filter_kernel, dl_matrix2d_t* filter_bias,
|
||||
dl_matrix2d_t* gate_kernel, dl_matrix2d_t* gate_bias);
|
||||
|
||||
|
||||
void test_atrous_conv(int size, int rate, int in_channel, int out_channel);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,174 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_CONVQ_QUEUE_H
|
||||
#define DL_LIB_CONVQ_QUEUE_H
|
||||
|
||||
|
||||
#include "dl_lib_matrixq.h"
|
||||
#include "dl_lib_conv_queue.h"
|
||||
|
||||
//fixed-point convolution FIFO queue.
|
||||
typedef struct {
|
||||
int n; /*< the length of queue */
|
||||
int c; /*< the channel number of queue element*/
|
||||
int front; /*< the front(top) position of queue */
|
||||
int flag; /*< not used */
|
||||
int exponent; /*< The values in items should be multiplied by pow(2,exponent)
|
||||
to get the real values */
|
||||
qtp_t *itemq; /*< Pointer to item array */
|
||||
} dl_convq_queue_t;
|
||||
|
||||
/**
|
||||
* @brief Allocate a fixed-point convolution queue
|
||||
*
|
||||
* @param n The length of queue
|
||||
* @param c The channel number of elements in the queue
|
||||
* @return The convolution queue, or NULL if out of memory
|
||||
*/
|
||||
dl_convq_queue_t *dl_convq_queue_alloc(int n, int c);
|
||||
|
||||
void dl_convq_to_matrix2dq(dl_convq_queue_t *cq, dl_matrix2dq_t* out, int row);
|
||||
|
||||
/**
|
||||
* @brief Free a fixed-point convolution queue
|
||||
*
|
||||
* @param cq The fixed-point convolution queue to free
|
||||
*/
|
||||
void dl_convq_queue_free(dl_convq_queue_t *cq);
|
||||
|
||||
/**
|
||||
* @brief Move the front pointer of queue forward,
|
||||
the First(oldest) element become the last(newest) element,
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @return Pointer of oldest element
|
||||
*/
|
||||
qtp_t *dl_convq_queue_pop(dl_convq_queue_t *cq);
|
||||
|
||||
/**
|
||||
* @brief Remove the oldest element, then insert the input element at the end of queue
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param item The new element
|
||||
*/
|
||||
void dl_convq_queue_push(dl_convq_queue_t *cq, dl_matrix2dq_t *a, int shift);
|
||||
|
||||
/**
|
||||
* @brief Insert the float-point element at the end of queue.
|
||||
* The precision of fixed-point numbers is described by the Qm.f notation,
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param item The float-point element
|
||||
* @param m_bit The number of integer bits including the sign bits
|
||||
* @param f_bit The number of fractional bits
|
||||
*/
|
||||
void dl_convq_queue_push_by_qmf(dl_convq_queue_t *cq, fptp_t* item, int m_bit, int f_bit);
|
||||
|
||||
/**
|
||||
* @brief Get the pointer of element in the queue by offset
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
qtp_t *dl_get_queue_itemq(dl_convq_queue_t *cq, int offset);
|
||||
|
||||
/**
|
||||
* @brief Does a tanh operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, and does a
|
||||
* tanh operation by this pointer, then return the pointer
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
void dl_tanh_convq(dl_convq_queue_t *cq, int last_num);
|
||||
|
||||
/**
|
||||
* @brief Does a relu operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, and does a
|
||||
* relu operation by this pointer, then return the pointer
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @return Pointer of the element
|
||||
*/
|
||||
void dl_relu_convq(dl_convq_queue_t *cq, fptp_t clip, int last_num);
|
||||
|
||||
/**
|
||||
* @brief Does a softmax operation on the one of element in the convolution queue.
|
||||
* Gets the pointer of element in the convolution queue by offset, input data
|
||||
stay as it is. Results are saved into the *out* array.
|
||||
*
|
||||
* @param cq Input fixed-point convolution queue
|
||||
* @param offset Offset from the front of the queue
|
||||
* @param out Old array to re-use. Passing NULL will allocate a new matrix.
|
||||
* @return softmax results
|
||||
*/
|
||||
fptp_t * dl_softmax_step_q(dl_convq_queue_t *cq, int offset, fptp_t *out);
|
||||
|
||||
/**
|
||||
* @brief Fast and quantised implement for 1D atrous convolution (a.k.a. convolution with holes or dilated convolution)
|
||||
* based on convolution queue.
|
||||
*
|
||||
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
|
||||
* is last element of output queue and should not be freed separately.
|
||||
*
|
||||
* @param in Input fixed-point convolution queue
|
||||
* @param out Output fixed-point convolution queue
|
||||
* @param rate A positive int, the stride with which we sample input value
|
||||
* @param size A positive int, the size of 1D-filter
|
||||
* @param kernel The kernel matrix of filter
|
||||
* @param bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
|
||||
* @param shift Shift ratio used in dot operation between two 16-bit fixed point vector
|
||||
* @return The result of atrous convolution
|
||||
*/
|
||||
qtp_t *dl_atrous_conv1dq(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
|
||||
dl_matrix2dq_t* kernel, dl_matrix2dq_t* bias, int shift);
|
||||
qtp_t *dl_atrous_conv1dq_steps(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
|
||||
dl_matrix2dq_t* kernel, dl_matrix2dq_t* bias, int shift, int offset);
|
||||
/**
|
||||
* @brief Fast implement of dilation layer as follows
|
||||
*
|
||||
* |-> [gate(sigmoid)] -|
|
||||
* input - | |-> (*) - output
|
||||
* |-> [filter(tanh)] -|
|
||||
*
|
||||
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
|
||||
* is last element of output queue and should not be freed separately.
|
||||
*
|
||||
* @param in Input fixed-point convolution queue
|
||||
* @param out Output fixed-point convolution queue
|
||||
* @param rate A positive int, the stride with which we sample input value
|
||||
* @param size A positive int, the size of 1D-filter
|
||||
* @param filter_kernel The kernel matrix of filter
|
||||
* @param filter_bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
|
||||
* @param gate_kernel The kernel matrix of gate
|
||||
* @param gate_bias The bias matrix of gate. Can be NULL if a bias of 0 is required.
|
||||
* @filter_shift Shift ratio used in filter operation between two 16-bit fixed point vector
|
||||
* @gate_shift Shift ratio used in gate operation between two 16-bit fixed point vector
|
||||
* @return The result of dilation layer
|
||||
*/
|
||||
qtp_t *dl_dilation_layerq(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
|
||||
dl_matrix2dq_t* filter_kernel, dl_matrix2dq_t* filter_bias,
|
||||
dl_matrix2dq_t* gate_kernel, dl_matrix2dq_t* gate_bias,
|
||||
int filter_shift, int gate_shift);
|
||||
|
||||
dl_matrix2dq_t *dl_basic_lstm_layer1_q(const dl_convq_queue_t *in, dl_matrix2dq_t *state_c, dl_matrix2dq_t *state_h,
|
||||
const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, int step, int shift);
|
||||
void test_atrous_convq(int size, int rate, int in_channel, int out_channel);
|
||||
|
||||
dl_conv_queue_t *dl_convq_queue_add(dl_convq_queue_t *cq1, dl_convq_queue_t *cq2);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,236 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_MATRIX_H
|
||||
#define DL_LIB_MATRIX_H
|
||||
|
||||
#if CONFIG_BT_SHARE_MEM_REUSE
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#endif
|
||||
|
||||
typedef float fptp_t;
|
||||
|
||||
#if CONFIG_BT_SHARE_MEM_REUSE
|
||||
extern multi_heap_handle_t gst_heap;
|
||||
#endif
|
||||
|
||||
//Flags for matrices
|
||||
#define DL_MF_FOREIGNDATA (1<<0) /*< Matrix *item data actually points to another matrix and should not be freed */
|
||||
|
||||
//'Normal' float matrix
|
||||
typedef struct {
|
||||
int w; /*< Width */
|
||||
int h; /*< Height */
|
||||
int stride; /*< Row stride, essentially how many items to skip to get to the same position in the next row */
|
||||
int flags; /*< Flags. OR of DL_MF_* values */
|
||||
fptp_t *item; /*< Pointer to item array */
|
||||
} dl_matrix2d_t;
|
||||
|
||||
//Macro to quickly access the raw items in a matrix
|
||||
#define DL_ITM(m, x, y) m->item[(x)+(y)*m->stride]
|
||||
|
||||
|
||||
/**
|
||||
* @brief Allocate a matrix
|
||||
*
|
||||
* @param w Width of the matrix
|
||||
* @param h Height of the matrix
|
||||
* @return The matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2d_t *dl_matrix_alloc(int w, int h);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Free a matrix
|
||||
* Frees the matrix structure and (if it doesn't have the DL_MF_FOREIGNDATA flag set) the m->items space as well.
|
||||
*
|
||||
* @param m Matrix to free
|
||||
*/
|
||||
void dl_matrix_free(dl_matrix2d_t *m);
|
||||
|
||||
/**
|
||||
* @brief Zero out the matrix
|
||||
* Sets all entries in the matrix to 0.
|
||||
*
|
||||
* @param m Matrix to zero
|
||||
*/
|
||||
void dl_matrix_zero(dl_matrix2d_t *m);
|
||||
|
||||
/**
|
||||
* @brief Generate a new matrix using a range of items from an existing matrix.
|
||||
* When using this, the data of the new matrix is not allocated/copied but it re-uses a pointer
|
||||
* to the existing data. Changing the data in the resulting matrix, as a result, will also change
|
||||
* the data in the existing matrix that has been sliced.
|
||||
*
|
||||
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param w Width of the resulting matrix
|
||||
* @param h Height of the resulting matrix
|
||||
* @param in Old matrix (with foreign data) to re-use. Passing NULL will allocate a new matrix.
|
||||
* @return The resulting slice matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2d_t *dl_matrix_slice(const dl_matrix2d_t *src, int x, int y, int w, int h, dl_matrix2d_t *in);
|
||||
|
||||
/**
|
||||
* @brief select a range of items from an existing matrix and flatten them into one dimension.
|
||||
*
|
||||
* @Warning The results are flattened in row-major order.
|
||||
*
|
||||
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param w Width of the resulting matrix
|
||||
* @param h Height of the resulting matrix
|
||||
* @param in Old matrix to re-use. Passing NULL will allocate a new matrix.
|
||||
* @return The resulting flatten matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2d_t *dl_matrix_flatten(const dl_matrix2d_t *src, int x, int y, int w, int h, dl_matrix2d_t *in);
|
||||
|
||||
/**
|
||||
* @brief Generate a matrix from existing floating-point data
|
||||
*
|
||||
* @param w Width of resulting matrix
|
||||
* @param h Height of resulting matrix
|
||||
* @param data Data to populate matrix with
|
||||
* @return A newaly allocated matrix populated with the given input data, or NULL if out of memory.
|
||||
*/
|
||||
dl_matrix2d_t *dl_matrix_from_data(int w, int h, int stride, const void *data);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Multiply a pair of matrices item-by-item: res=a*b
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Multiplicated data. Can be equal to a or b to overwrite that.
|
||||
*/
|
||||
void dl_matrix_mul(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *res);
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of two matrices : res=a.b
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
|
||||
*/
|
||||
void dl_matrix_dot(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *res);
|
||||
|
||||
/**
|
||||
* @brief Add a pair of matrices item-by-item: res=a-b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Added data. Can be equal to a or b to overwrite that.
|
||||
*/
|
||||
void dl_matrix_add(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Divide a pair of matrices item-by-item: res=a/b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Divided data. Can be equal to a or b to overwrite that.
|
||||
*/
|
||||
void dl_matrix_div(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Subtract a matrix from another, item-by-item: res=a-b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Subtracted data. Can be equal to a or b to overwrite that.
|
||||
*/
|
||||
void dl_matrix_sub(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
|
||||
|
||||
/**
|
||||
* @brief Add a constant to every item of the matrix
|
||||
*
|
||||
* @param subj Matrix to add the constant to
|
||||
* @param add The constant
|
||||
*/
|
||||
void dl_matrix_add_const(dl_matrix2d_t *subj, const fptp_t add);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Concatenate the rows of two matrices into a new matrix
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @return A newly allocated array with as avlues a|b
|
||||
*/
|
||||
dl_matrix2d_t *dl_matrix_concat(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Print the contents of a matrix to stdout. Used for debugging.
|
||||
*
|
||||
* @param a The matrix to print.
|
||||
*/
|
||||
void dl_printmatrix(const dl_matrix2d_t *a);
|
||||
|
||||
/**
|
||||
* @brief Return the average square error given a correct and a test matrix.
|
||||
*
|
||||
* ...Well, more or less. If anything, it gives an indication of the error between
|
||||
* the two. Check the code for the exact implementation.
|
||||
*
|
||||
* @param a First of the two matrices to compare
|
||||
* @param b Second of the two matrices to compare
|
||||
* @return value indicating the relative difference between matrices
|
||||
*/
|
||||
float dl_matrix_get_avg_sq_err(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Check if two matrices have the same shape, that is, the same amount of rows and columns
|
||||
*
|
||||
* @param a First of the two matrices to compare
|
||||
* @param b Second of the two matrices to compare
|
||||
* @return true if the two matrices are shaped the same, false otherwise.
|
||||
*/
|
||||
int dl_matrix_same_shape(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get a specific item from the matrix
|
||||
*
|
||||
* Please use these for external matrix access instead of DL_ITM
|
||||
*
|
||||
* @param m Matrix to access
|
||||
* @param x Column address
|
||||
* @param y Row address
|
||||
* @return Value in that position
|
||||
*/
|
||||
inline static fptp_t dl_matrix_get(const dl_matrix2d_t *m, const int x, const int y) {
|
||||
return DL_ITM(m, x, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set a specific item in the matrix to the given value
|
||||
*
|
||||
* Please use these for external matrix access instead of DL_ITM
|
||||
*
|
||||
* @param m Matrix to access
|
||||
* @param x Column address
|
||||
* @param y Row address
|
||||
* @param val Value to write to that position
|
||||
*/
|
||||
inline static void dl_matrix_set(dl_matrix2d_t *m, const int x, const int y, fptp_t val) {
|
||||
DL_ITM(m, x, y)=val;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,372 @@
|
|||
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef DL_LIB_MATRIXQ_H
|
||||
#define DL_LIB_MATRIXQ_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "dl_lib_matrix.h"
|
||||
|
||||
typedef int16_t qtp_t;
|
||||
|
||||
//Quantized matrix. Uses fixed numbers and has the storage for the rows/columns inverted
|
||||
//for easy use as a multiplicand without stressing out the flash cache too much.
|
||||
typedef struct {
|
||||
int w;
|
||||
int h;
|
||||
int stride; //Normally equals h, not w!
|
||||
int flags;
|
||||
int exponent; //The values in items should be multiplied by pow(2,exponent) to get the real values.
|
||||
qtp_t *itemq;
|
||||
} dl_matrix2dq_t;
|
||||
|
||||
#define DL_QTP_SHIFT 15
|
||||
#define DL_QTP_RANGE ((1<<DL_QTP_SHIFT)-1)
|
||||
#define DL_ITMQ(m, x, y) m->itemq[(y)+(x)*m->stride]
|
||||
#define DL_QTP_EXP_NA 255 //non-applicable exponent because matrix is null
|
||||
|
||||
#define DL_SHIFT_AUTO 32
|
||||
|
||||
/**
|
||||
* @info About quantized matrices and shift values
|
||||
*
|
||||
* Grab a coffee (or tea, or hot water) and sit down when you read this for the first
|
||||
* time. Quantized matrices can speed up your operations, but come with some quirks, and
|
||||
* it's good to understand how they work before using them.
|
||||
*
|
||||
* The data in the quantized matrix type is stored similarily to floating-point types:
|
||||
* when storing a real value, the value is stored as a mantissa (base number) and an
|
||||
* exponent. The 'real' value that can be re-derived from those two numbers is something
|
||||
* similar to mantissa*2^exponent. Up to this point, there's not that much difference from
|
||||
* the standard floating point implementations like e.g. IEEE-754.
|
||||
*
|
||||
* The difference with respect to quantized matrices is that for a quantized matrix, it is
|
||||
* assumed all values stored have more-or-less the same order of magnitude. This allows the
|
||||
* matrix to only store all the mantissas, while the exponents are shared; there is only one
|
||||
* exponent for the entire matrix. This makes it quicker to handle matrix operations - the
|
||||
* logic to fix the exponents only needs to happen once, while the rest can be done in simple
|
||||
* integer arithmetic. It also nets us some memory savings - while normally a floating point
|
||||
* number is 32-bit, storing only 16-bit mantissas as the matrix items almost halves the
|
||||
* memory requirements.
|
||||
*
|
||||
* While most of the details of handling the intricacies of the quantized matrixes are done
|
||||
* transparently by the code in dl_lib_matrixq.c, some implementation details leak out,
|
||||
* specifically in places where addition/subtraction/division happens.
|
||||
*
|
||||
* The problem is that the routines do not know what the size of the resulting operation is. For
|
||||
* instance, when adding two matrices of numbers, the resulting numbers *could* be large enough
|
||||
* to overflow the mantissa of the result if the exponent is the same. However, if by default we
|
||||
* assume the mantissas needs to be scaled back, we may lose precision.
|
||||
*
|
||||
* In order to counter this, all operations that have this issue have a ``shift`` argument. If
|
||||
* the argument is zero, the routine will be conservative, that is, increase the exponent of
|
||||
* the result to such an extent it's mathematically impossible a value in the result will exceed
|
||||
* the maximum value that can be stored. However, when this argument is larger than zero, the
|
||||
* algorithm will hold back on this scaling by the indicated amount of bits, preserving precision
|
||||
* but increasing the chance of some of the calculated values not fitting in the mantissa anymore.
|
||||
* If this happens, the value will be clipped to the largest (or, for negative values, smallest)
|
||||
* value possible. (Neural networks usually are okay with this happening for a limited amount
|
||||
* of matrix indices).
|
||||
*
|
||||
* For deciding on these shift values, it is recommended to start with a shift value of one, then
|
||||
* use dl_matrixq_check_sanity on the result. If this indicates clipping, lower the shift value.
|
||||
* If it indicates bits are under-used, increase it. Note that for adding and subtraction, only
|
||||
* shift values of 0 or 1 make sense; these routines will error out if you try to do something
|
||||
* else.
|
||||
*
|
||||
* For neural networks and other noise-tolerant applications, note that even when
|
||||
* dl_matrixq_check_sanity does not indicate any problems, twiddling with the shift value may lead
|
||||
* to slightly improved precision. Feel free to experiment.
|
||||
**/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Allocate a matrix
|
||||
*
|
||||
* @param w Width of the matrix
|
||||
* @param h Height of the matrix
|
||||
* @return The matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_alloc(int w, int h);
|
||||
|
||||
/**
|
||||
* @brief Convert a floating-point matrix to a quantized matrix
|
||||
*
|
||||
* @param m Floating-point matrix to convert
|
||||
* @param out Quantized matrix to re-use. If NULL, allocate a new one.
|
||||
* @Return The quantized version of the floating-point matrix
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_from_matrix2d(const dl_matrix2d_t *m, dl_matrix2dq_t *out);
|
||||
|
||||
|
||||
/**
|
||||
* TODO: DESCRIBE THIS FUNCTION
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_from_matrix2d_by_qmf(const dl_matrix2d_t *m, dl_matrix2dq_t *out, int m_bit, int f_bit);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Convert a quantized matrix to a floating-point one.
|
||||
*
|
||||
* @param m Floating-point matrix to convert
|
||||
* @param out Quantized matrix to re-use. If NULL, allocate a new one.
|
||||
* @Return The quantized version of the floating-point matrix
|
||||
**/
|
||||
dl_matrix2d_t *dl_matrix2d_from_matrixq(const dl_matrix2dq_t *m, dl_matrix2d_t *out);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Free a quantized matrix
|
||||
* Frees the matrix structure and (if it doesn't have the DL_MF_FOREIGNDATA flag set) the m->items space as well.
|
||||
*
|
||||
* @param m Matrix to free
|
||||
*/
|
||||
void dl_matrixq_free(dl_matrix2dq_t *m);
|
||||
|
||||
/**
|
||||
* @brief Zero out the matrix
|
||||
* Sets all entries in the matrix to 0.
|
||||
*
|
||||
* @param m Matrix to zero
|
||||
*/
|
||||
void dl_matrixq_zero(dl_matrix2dq_t *m);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of two quantized matrices : res=a.b, Result is a fixed-point matrix.
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
|
||||
* @param shift Shift ratio
|
||||
*/
|
||||
void dl_matrixq_dot(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of two quantized matrices: res=a.b, Result is a floating-point matrix.
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
|
||||
*/
|
||||
void dl_matrixq_dot_matrix_out(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of two quantized matrices : res=a.b. This always uses the simple & stupid C algo for the dot product.
|
||||
*
|
||||
* Result is a fixed-point matrix.
|
||||
*
|
||||
* Use this only if you expect something is wrong with the accelerated routines that dl_matrixq_dot calls; this function can be
|
||||
* much slower than dl_matrixq_dot .
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
|
||||
* @param shift Shift ratio
|
||||
*/
|
||||
void dl_matrixq_dot_c_impl(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of two quantized matrices : res=a.b. This always uses the simple & stupid C algo for the dot product.
|
||||
*
|
||||
* Result is a floating-point matrix.
|
||||
*
|
||||
* Use this only if you expect something is wrong with the accelerated routines that dl_matrixq_dot_matrix_out calls; this function can be
|
||||
* much slower than dl_matrixq_dot_matrix_out.
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
|
||||
*/
|
||||
void dl_matrixq_dot_matrix_out_c_impl(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
|
||||
|
||||
/**
|
||||
* @brief Do a dotproduct of a floating point and a quantized matrix. Result is a floating-point matrix.
|
||||
*
|
||||
* @param a First multiplicand; float matrix
|
||||
* @param b Second multiplicand; quantized matrix
|
||||
* @param res Dotproduct data; float matrix. *Must* be a *different* matrix from a or b!
|
||||
*/
|
||||
void dl_matrix_matrixq_dot(const dl_matrix2d_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Print the contents of a quantized matrix to stdout. Used for debugging.
|
||||
*
|
||||
* @param a The matrix to print.
|
||||
*/
|
||||
void dl_printmatrixq(const dl_matrix2dq_t *a);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Add a pair of quantizedmatrices item-by-item: res=a-b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Added data. Can be equal to a or b to overwrite that.
|
||||
* @param shift Shift value. Only 0 or 1 makes sense here. <ToDo: check>
|
||||
*/
|
||||
void dl_matrixq_add(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
|
||||
|
||||
/**
|
||||
* @brief Generate a new matrix using a range of items from an existing matrix.
|
||||
* When using this, the data of the new matrix is not allocated/copied but it re-uses a pointer
|
||||
* to the existing data. Changing the data in the resulting matrix, as a result, will also change
|
||||
* the data in the existing matrix that has been sliced.
|
||||
*
|
||||
* @Warning In contrast to the floating point equivalent of this function, the fixed-point version
|
||||
* of this has the issue that as soon as the output exponent of one of the slices changes, the data
|
||||
* in the sliced matrix gets corrupted (because the exponent of that matrix is still the same.) If you
|
||||
* use this function, either treat the slices as read-only, or assume the sliced matrix contains
|
||||
* garbage after modifying the data in one of the slices.
|
||||
*
|
||||
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param w Width of the resulting matrix
|
||||
* @param h Height of the resulting matrix
|
||||
* @param in Old matrix (with foreign data) to re-use. Passing NULL will allocate a new matrix.
|
||||
* @return The resulting slice matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_slice(const dl_matrix2dq_t *src, int x, int y, int w, int h, dl_matrix2dq_t *in);
|
||||
|
||||
/**
|
||||
* @brief select a range of items from an existing matrix and flatten them into one dimension.
|
||||
*
|
||||
* @Warning The results are flattened in row-major order.
|
||||
*
|
||||
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
||||
* @param w Width of the resulting matrix
|
||||
* @param h Height of the resulting matrix
|
||||
* @param in Old matrix to re-use. Passing NULL will allocate a new matrix.
|
||||
* @return The resulting flatten matrix, or NULL if out of memory
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_flatten(const dl_matrix2dq_t *src, int x, int y, int w, int h, dl_matrix2dq_t *in);
|
||||
|
||||
/**
|
||||
* @brief Subtract a quantized matrix from another, item-by-item: res=a-b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Subtracted data. Can be equal to a or b to overwrite that.
|
||||
* @param shift Shift value. Only 0 or 1 makes sense here. <ToDo: check>
|
||||
*/
|
||||
void dl_matrixq_sub(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
|
||||
|
||||
/**
|
||||
* @brief Multiply a pair of quantized matrices item-by-item: res=a*b
|
||||
*
|
||||
* @param a First multiplicand
|
||||
* @param b Second multiplicand
|
||||
* @param res Multiplicated data. Can be equal to a or b to overwrite that matrix.
|
||||
*/
|
||||
void dl_matrixq_mul(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res);
|
||||
|
||||
/**
|
||||
* @brief Divide a pair of quantized matrices item-by-item: res=a/b
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @param res Divided data. Can be equal to a or b to overwrite that.
|
||||
*/
|
||||
void dl_matrixq_div(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *out, int shift);
|
||||
|
||||
/**
|
||||
* @brief Check if two quantized matrices have the same shape, that is, the same amount of
|
||||
* rows and columns
|
||||
*
|
||||
* @param a First of the two matrices to compare
|
||||
* @param b Second of the two matrices to compare
|
||||
* @return true if the two matrices are shaped the same, false otherwise.
|
||||
*/
|
||||
int dl_matrixq_same_shape(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b);
|
||||
|
||||
/**
|
||||
* @brief Concatenate the rows of two quantized matrices into a new matrix
|
||||
*
|
||||
* @param a First matrix
|
||||
* @param b Second matrix
|
||||
* @return A newly allocated quantized matrix with as values a|b
|
||||
*/
|
||||
dl_matrix2dq_t *dl_matrixq_concat(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b);
|
||||
|
||||
/**
|
||||
* @brief Add a constant to every item of the quantized matrix
|
||||
*
|
||||
* @param subj Matrix to add the constant to
|
||||
* @param add The constant
|
||||
*/
|
||||
void dl_matrixq_add_const(dl_matrix2dq_t *subj, const fptp_t add, int shift);
|
||||
|
||||
/**
|
||||
* @brief Check the sanity of a quantized matrix
|
||||
*
|
||||
* Due to the nature of quantized matrices, depending on the calculations a quantized
|
||||
* matrix is the result of and the shift values chosen in those calculations, a quantized
|
||||
* matrix may have an exponent and mantissas that lead to a loss of precision, either because
|
||||
* most significant mantissa bits are unused, or because a fair amount of mantissas are
|
||||
* clipped. This function checks if this is the case and will report a message to stdout
|
||||
* if significant loss of precision is detected.
|
||||
*
|
||||
* @param m The quantized matrix to check
|
||||
* @param name A string to be displayed in the message if the sanity check fails
|
||||
* @return True if matrix is sane, false otherwise
|
||||
**/
|
||||
|
||||
int dl_matrixq_check_sanity(dl_matrix2dq_t *m, const char *name);
|
||||
|
||||
/**
|
||||
* @brief re-adjust the exponent of the matrix to fit the mantissa better
|
||||
*
|
||||
* This function will shift up all the data in the mantissas so there are no
|
||||
* most-significant bits that are unused in all mantissas. It will also adjust
|
||||
* the exponent to keep the actua values in the matrix the same.
|
||||
*
|
||||
* Some operations done on a matrix, especially operations that re-use the
|
||||
* result of earlier operations done in the same way, can lead to the loss of
|
||||
* data because the exponent of the quantized matrix is never re-adjusted. You
|
||||
* can do that implicitely by calling this function.
|
||||
*
|
||||
* @param m The matrix to re-adjust
|
||||
**/
|
||||
void dl_matrixq_readjust_exp(dl_matrix2dq_t *m);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the floating-point value of a specific item from the quantized matrix
|
||||
*
|
||||
* @param m Matrix to access
|
||||
* @param x Column address
|
||||
* @param y Row address
|
||||
* @return Value in that position
|
||||
*/
|
||||
fptp_t dl_matrixq_get(const dl_matrix2dq_t *m, const int x, const int y);
|
||||
|
||||
/**
|
||||
* @brief Set a specific item in the quantized matrix to the given
|
||||
* floating-point value
|
||||
*
|
||||
* @warning If the given value is more than the exponent in the quantized matrix
|
||||
* allows for, all mantissas in the matrix will be shifted down to make the value
|
||||
* 'fit'. If, however, the exponent is such that the value would result in a
|
||||
* quantized mantissa of 0, nothing is done.
|
||||
*
|
||||
* @param m Matrix to access
|
||||
* @param x Column address
|
||||
* @param y Row address
|
||||
* @param val Value to write to that position
|
||||
*/
|
||||
void dl_matrixq_set(dl_matrix2dq_t *m, const int x, const int y, fptp_t val);
|
||||
|
||||
#endif
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,11 @@
|
|||
COMPONENT_ADD_INCLUDEDIRS := include
|
||||
|
||||
COMPONENT_SRCDIRS := .
|
||||
|
||||
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
|
||||
|
||||
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
|
||||
|
||||
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
|
||||
|
||||
ALL_LIB_FILES += $(LIB_FILES)
|
|
@ -1,6 +1,6 @@
|
|||
#pragma once
|
||||
#include "stdint.h"
|
||||
#include "esp_err.h"
|
||||
#include "dl_lib_coefgetter_if.h"
|
||||
|
||||
//Opaque model data container
|
||||
typedef struct model_iface_data_t model_iface_data_t;
|
||||
|
@ -19,12 +19,13 @@ typedef struct {
|
|||
} wake_word_info_t;
|
||||
|
||||
/**
|
||||
* @brief Easy function type to initialze a model instance with a detection mode
|
||||
* @brief Easy function type to initialze a model instance with a detection mode and specified wake word coefficient
|
||||
*
|
||||
* @param det_mode The wake words detection mode to trigger wake words, the range of det_threshold is 0.5~0.9999
|
||||
* @param det_mode The wake words detection mode to trigger wake words, DET_MODE_90 or DET_MODE_95
|
||||
* @param model_coeff The specified wake word model coefficient
|
||||
* @returns Handle to the model data
|
||||
*/
|
||||
typedef model_iface_data_t* (*esp_sr_iface_op_create_t)(det_mode_t det_mode);
|
||||
typedef model_iface_data_t* (*esp_wn_iface_op_create_t)(const model_coeff_getter_t *model_coeff, det_mode_t det_mode);
|
||||
|
||||
|
||||
/**
|
||||
|
@ -36,7 +37,7 @@ typedef model_iface_data_t* (*esp_sr_iface_op_create_t)(det_mode_t det_mode);
|
|||
* @param model The model object to query
|
||||
* @return The amount of samples to feed the detect function
|
||||
*/
|
||||
typedef int (*esp_sr_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
|
||||
typedef int (*esp_wn_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
|
||||
|
||||
|
||||
/**
|
||||
|
@ -45,7 +46,7 @@ typedef int (*esp_sr_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
|
|||
* @param model The model object to query
|
||||
* @return The sample rate, in hz
|
||||
*/
|
||||
typedef int (*esp_sr_iface_op_get_samp_rate_t)(model_iface_data_t *model);
|
||||
typedef int (*esp_wn_iface_op_get_samp_rate_t)(model_iface_data_t *model);
|
||||
|
||||
/**
|
||||
* @brief Get the number of wake words
|
||||
|
@ -53,7 +54,7 @@ typedef int (*esp_sr_iface_op_get_samp_rate_t)(model_iface_data_t *model);
|
|||
* @param model The model object to query
|
||||
* @returns the number of wake words
|
||||
*/
|
||||
typedef int (*esp_sr_iface_op_get_word_num_t)(model_iface_data_t *model);
|
||||
typedef int (*esp_wn_iface_op_get_word_num_t)(model_iface_data_t *model);
|
||||
|
||||
/**
|
||||
* @brief Get the name of wake word by index
|
||||
|
@ -64,18 +65,7 @@ typedef int (*esp_sr_iface_op_get_word_num_t)(model_iface_data_t *model);
|
|||
* @param word_index The index of wake word
|
||||
* @returns the detection threshold
|
||||
*/
|
||||
typedef char* (*esp_sr_iface_op_get_word_name_t)(model_iface_data_t *model, int word_index);
|
||||
|
||||
/**
|
||||
* @brief Get the structure which contains the information about wake words
|
||||
*
|
||||
* @param model The model object to query
|
||||
* @param word_list The structure which contains the number and name of wake words
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
* - ESP_FAIL The word_list is NULL.
|
||||
*/
|
||||
typedef esp_err_t (*esp_sr_iface_op_get_word_list_t)(model_iface_data_t *model, wake_word_info_t* word_list);
|
||||
typedef char* (*esp_wn_iface_op_get_word_name_t)(model_iface_data_t *model, int word_index);
|
||||
|
||||
/**
|
||||
* @brief Set the detection threshold to manually abjust the probability
|
||||
|
@ -85,20 +75,19 @@ typedef esp_err_t (*esp_sr_iface_op_get_word_list_t)(model_iface_data_t *model,
|
|||
* @param word_index The index of wake word
|
||||
* @return 0: setting failed, 1: setting success
|
||||
*/
|
||||
typedef int (*esp_sr_iface_op_set_det_threshold_t)(model_iface_data_t *model, float det_threshold, int word_index);
|
||||
typedef int (*esp_wn_iface_op_set_det_threshold_t)(model_iface_data_t *model, float det_threshold, int word_index);
|
||||
|
||||
/**
|
||||
* @brief Get the wake word detection threshold of different modes
|
||||
*
|
||||
* @param model The model object to query
|
||||
* @param det_mode The wake words recognition operating mode
|
||||
* @param word_index The index of wake word
|
||||
* @returns the detection threshold
|
||||
*/
|
||||
typedef float (*esp_sr_iface_op_get_det_threshold_t)(model_iface_data_t *model, det_mode_t det_mode, int word_index);
|
||||
typedef float (*esp_wn_iface_op_get_det_threshold_t)(model_iface_data_t *model, int word_index);
|
||||
|
||||
/**
|
||||
* @brief Feed samples of an audio stream to the speech recognition model and detect if there is a keyword found.
|
||||
* @brief Feed samples of an audio stream to the keyword detection model and detect if there is a keyword found.
|
||||
*
|
||||
* @Warning The index of wake word start with 1, 0 means no wake words is detected.
|
||||
*
|
||||
|
@ -107,28 +96,27 @@ typedef float (*esp_sr_iface_op_get_det_threshold_t)(model_iface_data_t *model,
|
|||
* get_samp_chunksize function.
|
||||
* @return The index of wake words, return 0 if no wake word is detected, else the index of the wake words.
|
||||
*/
|
||||
typedef int (*esp_sr_iface_op_detect_t)(model_iface_data_t *model, int16_t *samples);
|
||||
typedef int (*esp_wn_iface_op_detect_t)(model_iface_data_t *model, int16_t *samples);
|
||||
|
||||
/**
|
||||
* @brief Destroy a speech recognition model
|
||||
*
|
||||
* @param model Model object to destroy
|
||||
*/
|
||||
typedef void (*esp_sr_iface_op_destroy_t)(model_iface_data_t *model);
|
||||
typedef void (*esp_wn_iface_op_destroy_t)(model_iface_data_t *model);
|
||||
|
||||
|
||||
/**
|
||||
* This structure contains the functions used to do operations on a speech recognition model.
|
||||
* This structure contains the functions used to do operations on a wake word detection model.
|
||||
*/
|
||||
typedef struct {
|
||||
esp_sr_iface_op_create_t create;
|
||||
esp_sr_iface_op_get_samp_chunksize_t get_samp_chunksize;
|
||||
esp_sr_iface_op_get_samp_rate_t get_samp_rate;
|
||||
esp_sr_iface_op_get_word_num_t get_word_num;
|
||||
esp_sr_iface_op_get_word_name_t get_word_name;
|
||||
esp_sr_iface_op_get_word_list_t get_word_list;
|
||||
esp_sr_iface_op_set_det_threshold_t set_det_threshold;
|
||||
esp_sr_iface_op_get_det_threshold_t get_det_threshold_by_mode;
|
||||
esp_sr_iface_op_detect_t detect;
|
||||
esp_sr_iface_op_destroy_t destroy;
|
||||
} esp_sr_iface_t;
|
||||
esp_wn_iface_op_create_t create;
|
||||
esp_wn_iface_op_get_samp_chunksize_t get_samp_chunksize;
|
||||
esp_wn_iface_op_get_samp_rate_t get_samp_rate;
|
||||
esp_wn_iface_op_get_word_num_t get_word_num;
|
||||
esp_wn_iface_op_get_word_name_t get_word_name;
|
||||
esp_wn_iface_op_set_det_threshold_t set_det_threshold;
|
||||
esp_wn_iface_op_get_det_threshold_t get_det_threshold;
|
||||
esp_wn_iface_op_detect_t detect;
|
||||
esp_wn_iface_op_destroy_t destroy;
|
||||
} esp_wn_iface_t;
|
|
@ -1,19 +1,29 @@
|
|||
#pragma once
|
||||
#include "esp_sr_iface.h"
|
||||
#include "esp_wn_iface.h"
|
||||
|
||||
//Contains declarations of all available speech recognion models. Pair this up with the right coefficients and you have a model that can recognize
|
||||
//a specific phrase or word.
|
||||
extern const esp_sr_iface_t esp_sr_wakenet2_float;
|
||||
extern const esp_sr_iface_t sr_model_wakenet1_float;
|
||||
extern const esp_sr_iface_t sr_model_wakenet1_quantized;
|
||||
extern const esp_sr_iface_t esp_sr_wakenet2_quantized;
|
||||
extern const esp_sr_iface_t esp_sr_wakenet3_quantized;
|
||||
extern const esp_sr_iface_t esp_sr_wakenet4_quantized;
|
||||
|
||||
extern const esp_wn_iface_t esp_sr_wakenet5_quantized;
|
||||
|
||||
|
||||
/*
|
||||
Configure network to use based on what's selected in menuconfig.
|
||||
*/
|
||||
#define WAKENET_MODEL esp_sr_wakenet5_quantized
|
||||
|
||||
/*
|
||||
Configure wake word to use based on what's selected in menuconfig.
|
||||
*/
|
||||
|
||||
#include "hilexin_wn5.h"
|
||||
#define WAKENET_COEFF get_coeff_hilexin_wn5
|
||||
|
||||
|
||||
|
||||
/* example
|
||||
|
||||
static const sr_model_iface_t *model = &sr_model_wakenet3_quantized;
|
||||
static const sr_model_iface_t *model = &WAKENET_MODEL;
|
||||
|
||||
//Initialize wakeNet model data
|
||||
static model_iface_data_t *model_data=model->create(DET_MODE_90);
|
|
@ -0,0 +1,8 @@
|
|||
//Generated by mkmodel
|
||||
#pragma once
|
||||
#include <string.h>
|
||||
#include "dl_lib_coefgetter_if.h"
|
||||
#include "dl_lib_matrix.h"
|
||||
#include "dl_lib_matrixq.h"
|
||||
|
||||
extern const model_coeff_getter_t get_coeff_hilexin_wn5;
|
Binary file not shown.
|
@ -1,10 +0,0 @@
|
|||
set(COMPONENT_SRCS a.c)
|
||||
set(COMPONENT_ADD_INCLUDEDIRS include)
|
||||
|
||||
register_component()
|
||||
|
||||
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}")
|
||||
target_link_libraries(${COMPONENT_TARGET}
|
||||
esp_wakenet
|
||||
nn_model
|
||||
)
|
|
@ -1,12 +0,0 @@
|
|||
COMPONENT_ADD_INCLUDEDIRS := . \
|
||||
./include
|
||||
|
||||
COMPONENT_SRCDIRS := . \
|
||||
./include
|
||||
|
||||
LIBS := esp_wakenet nn_model
|
||||
|
||||
COMPONENT_ADD_LDFLAGS := -L$(COMPONENT_PATH)/ $(addprefix -l,$(LIBS))
|
||||
|
||||
ALL_LIB_FILES += $(patsubst %,$(COMPONENT_PATH)/lib%.a,$(LIBS))
|
||||
|
Binary file not shown.
Binary file not shown.
|
@ -15,8 +15,9 @@ set(COMPONENT_REQUIRES
|
|||
nvs_flash
|
||||
esp_http_server
|
||||
fb_gfx
|
||||
recorder_engine
|
||||
esp-sr
|
||||
spiffs
|
||||
)
|
||||
|
||||
register_component()
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ static const char *TAG = "app_httpserver";
|
|||
#define FACE_COLOR_CYAN (FACE_COLOR_BLUE | FACE_COLOR_GREEN)
|
||||
#define FACE_COLOR_PURPLE (FACE_COLOR_BLUE | FACE_COLOR_RED)
|
||||
|
||||
#define ENROLL_CONFIRM_TIMES 3
|
||||
#define ENROLL_CONFIRM_TIMES 1
|
||||
#define FACE_ID_SAVE_NUMBER 10
|
||||
|
||||
#define PART_BOUNDARY "123456789000000000000987654321"
|
||||
|
|
|
@ -69,3 +69,4 @@ void recsrcTask(void *arg)
|
|||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -12,14 +12,15 @@
|
|||
#include "esp_partition.h"
|
||||
#include "app_speech_srcif.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_sr_iface.h"
|
||||
#include "esp_sr_models.h"
|
||||
#include "esp_wn_iface.h"
|
||||
#include "esp_wn_models.h"
|
||||
#include "dl_lib_coefgetter_if.h"
|
||||
#include "app_main.h"
|
||||
|
||||
#define SR_MODEL esp_sr_wakenet3_quantized
|
||||
static const esp_wn_iface_t *wakenet = &WAKENET_MODEL;
|
||||
static const model_coeff_getter_t *model_coeff_getter = &WAKENET_COEFF;
|
||||
|
||||
static src_cfg_t srcif;
|
||||
static const esp_sr_iface_t *model = &SR_MODEL;
|
||||
static model_iface_data_t *model_data;
|
||||
|
||||
QueueHandle_t sndQueue;
|
||||
|
@ -27,20 +28,20 @@ QueueHandle_t sndQueue;
|
|||
static void event_wakeup_detected(int r)
|
||||
{
|
||||
assert(g_state == WAIT_FOR_WAKEUP);
|
||||
printf("%s DETECTED.\n", model->get_word_name(model_data, r));
|
||||
printf("%s DETECTED.\n", wakenet->get_word_name(model_data, r));
|
||||
g_state = WAIT_FOR_CONNECT;
|
||||
}
|
||||
|
||||
void nnTask(void *arg)
|
||||
{
|
||||
int audio_chunksize = model->get_samp_chunksize(model_data);
|
||||
int audio_chunksize = wakenet->get_samp_chunksize(model_data);
|
||||
int16_t *buffer=malloc(audio_chunksize*sizeof(int16_t));
|
||||
assert(buffer);
|
||||
|
||||
while(1) {
|
||||
xQueueReceive(sndQueue, buffer, portMAX_DELAY);
|
||||
|
||||
int r=model->detect(model_data, buffer);
|
||||
int r=wakenet->detect(model_data, buffer);
|
||||
if (r)
|
||||
{
|
||||
event_wakeup_detected(r);
|
||||
|
@ -54,15 +55,14 @@ void nnTask(void *arg)
|
|||
void app_speech_wakeup_init()
|
||||
{
|
||||
//Initialize NN model
|
||||
model_data=model->create(DET_MODE_95);
|
||||
model_data=wakenet->create(model_coeff_getter,DET_MODE_95);
|
||||
|
||||
wake_word_info_t* word_list = malloc(sizeof(wake_word_info_t));
|
||||
esp_err_t ret = model->get_word_list(model_data, word_list);
|
||||
if (ret == ESP_OK) printf("wake word number = %d, word1 name = %s\n",
|
||||
word_list->wake_word_num, word_list->wake_word_list[0]);
|
||||
free(word_list);
|
||||
int wake_word_num = wakenet->get_word_num(model_data);
|
||||
char *wake_word_list = wakenet->get_word_name(model_data, 1);
|
||||
if (wake_word_num) printf("wake word number = %d, word1 name = %s\n",
|
||||
wake_word_num, wake_word_list);
|
||||
|
||||
int audio_chunksize=model->get_samp_chunksize(model_data);
|
||||
int audio_chunksize=wakenet->get_samp_chunksize(model_data);
|
||||
|
||||
//Initialize sound source
|
||||
sndQueue=xQueueCreate(2, (audio_chunksize*sizeof(int16_t)));
|
||||
|
@ -73,3 +73,4 @@ void app_speech_wakeup_init()
|
|||
|
||||
xTaskCreatePinnedToCore(&nnTask, "nn", 2*1024, NULL, 5, NULL, 1);
|
||||
}
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
#include "app_wifi.h"
|
||||
#include "app_speech_srcif.h"
|
||||
|
||||
#define VERSION "0.9.0"
|
||||
#define VERSION "1.0.0"
|
||||
|
||||
#define GPIO_LED_RED 21
|
||||
#define GPIO_LED_WHITE 22
|
||||
|
|
Loading…
Reference in New Issue