Feature/esp sr

pull/131/head
Yuan Jiong 2020-02-17 15:55:27 +08:00 committed by XiaochaoGONG
parent 1911942083
commit 28c88f8e0e
35 changed files with 1775 additions and 84 deletions

View File

@ -4,4 +4,7 @@ EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/image_util
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/face_detection
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/face_recognition
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-face/object_detection
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/lib
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/wake_word_engine
EXTRA_COMPONENT_DIRS += $(SOLUTION_PATH)/components/esp-sr/acoustic_algorithm

View File

@ -0,0 +1,20 @@
set(COMPONENT_SRCS dummy.c)
set(COMPONENT_ADD_INCLUDEDIRS
lib/include
wake_word_engine/include
acoustic_algorithm/include
)
register_component()
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/lib")
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/wake_word_engine")
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}/acoustic_algorithm")
target_link_libraries(${COMPONENT_TARGET}
dl_lib_sr
c_speech_features
wakenet
hilexin_wn5
esp_audio_processor
)

View File

@ -0,0 +1,10 @@
PROJECT_NAME := esp_sr
MODULE_PATH := $(abspath $(shell pwd))
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/lib
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/wake_word_engine
EXTRA_COMPONENT_DIRS += $(MODULE_PATH)/acoustic_algorithm
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,11 @@
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := .
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
ALL_LIB_FILES += $(LIB_FILES)

View File

@ -0,0 +1,76 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License
#ifndef _ESP_AEC_H_
#define _ESP_AEC_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define USE_AEC_FFT // Not kiss_fft
#define AEC_SAMPLE_RATE 16000 // Only Support 16000Hz
#define AEC_FRAME_LENGTH_MS 16 // Only support 16ms
#define AEC_FILTER_LENGTH 1200 // Number of samples of echo to cancel
typedef void* aec_handle_t;
/**
* @brief Creates an instance to the AEC structure.
*
* @param sample_rate The Sampling frequency (Hz) can be 8000, 16000.
*
* @param frame_length The length of the audio processing can be 10ms, 20ms, 30ms, default: 30.
*
* @param filter_length Number of samples of echo to cancel.
*
* @return
* - NULL: Create failed
* - Others: The instance of AEC
*/
aec_handle_t aec_create(int sample_rate, int frame_length, int filter_length);
/**
* @brief Performs echo cancellation a frame, based on the audio sent to the speaker and frame from mic.
*
* @param inst The instance of AEC.
*
* @param indata An array of 16-bit signed audio samples from mic.
*
* @param refdata An array of 16-bit signed audio samples sent to the speaker.
*
* @param outdata Returns near-end signal with echo removed.
*
* @return None
*
*/
void aec_process(aec_handle_t inst, int16_t *indata, int16_t *refdata, int16_t *outdata);
/**
* @brief Free the AEC instance
*
* @param inst The instance of AEC.
*
* @return None
*
*/
void aec_destroy(aec_handle_t inst);
#ifdef __cplusplus
extern "C" {
#endif
#endif //_ESP_AEC_H_

View File

@ -0,0 +1,31 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License
#ifndef _ESP_AGC_H_
#define _ESP_AGC_H_
////all positive value is valid, negective is error
typedef enum {
ESP_AGC_SUCCESS = 0, ////success
ESP_AGC_FAIL = -1, ////agc fail
ESP_AGC_SAMPLE_RATE_ERROR = -2, ///sample rate can be only 8khz, 16khz, 32khz
ESP_AGC_FRAME_SIZE_ERROR = -3, ////the input frame size should be only 10ms, so should together with sample-rate to get the frame size
} ESP_AGE_ERR;
void *esp_agc_open(int agc_mode, int sample_rate);
void set_agc_config(void *agc_handle, int gain_dB, int limiter_enable, int target_level_dbfs);
int esp_agc_process(void *agc_handle, short *in_pcm, short *out_pcm, int frame_size, int sample_rate);
void esp_agc_clse(void *agc_handle);
#endif // _ESP_AGC_H_

View File

@ -0,0 +1,70 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License
#ifndef _ESP_NS_H_
#define _ESP_NS_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define NS_FRAME_LENGTH_MS 30 //Supports 10ms, 20ms, 30ms
/**
* The Sampling frequency (Hz) must be 16000Hz
*/
typedef void* ns_handle_t;
/**
* @brief Creates an instance to the NS structure.
*
* @param frame_length_ms The length of the audio processing can be 10ms, 20ms, 30ms.
*
* @return
* - NULL: Create failed
* - Others: The instance of NS
*/
ns_handle_t ns_create(int frame_length_ms);
/**
* @brief Feed samples of an audio stream to the NS and get the audio stream after Noise suppression.
*
* @param inst The instance of NS.
*
* @param indata An array of 16-bit signed audio samples.
*
* @param outdata An array of 16-bit signed audio samples after noise suppression.
*
* @return None
*
*/
void ns_process(ns_handle_t inst, int16_t *indata, int16_t *outdata);
/**
* @brief Free the NS instance
*
* @param inst The instance of NS.
*
* @return None
*
*/
void ns_destroy(ns_handle_t inst);
#ifdef __cplusplus
extern "C" {
#endif
#endif //_ESP_NS_H_

View File

@ -0,0 +1,104 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License
#ifndef _ESP_VAD_H_
#define _ESP_VAD_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SAMPLE_RATE_HZ 16000 //Supports 32000, 16000, 8000
#define VAD_FRAME_LENGTH_MS 30 //Supports 10ms, 20ms, 30ms
/**
* @brief Sets the VAD operating mode. A more aggressive (higher mode) VAD is more
* restrictive in reporting speech.
*/
typedef enum {
VAD_MODE_0 = 0,
VAD_MODE_1,
VAD_MODE_2,
VAD_MODE_3,
VAD_MODE_4
} vad_mode_t;
typedef enum {
VAD_SILENCE = 0,
VAD_SPEECH
} vad_state_t;
typedef void* vad_handle_t;
/**
* @brief Creates an instance to the VAD structure.
*
* @param vad_mode Sets the VAD operating mode.
*
* @param sample_rate_hz The Sampling frequency (Hz) can be 32000, 16000, 8000, default: 16000.
*
* @param one_frame_ms The length of the audio processing can be 10ms, 20ms, 30ms, default: 30.
*
* @return
* - NULL: Create failed
* - Others: The instance of VAD
*/
vad_handle_t vad_create(vad_mode_t vad_mode, int sample_rate_hz, int one_frame_ms);
/**
* @brief Feed samples of an audio stream to the VAD and check if there is someone speaking.
*
* @param inst The instance of VAD.
*
* @param data An array of 16-bit signed audio samples.
*
* @return
* - VAD_SILENCE if no voice
* - VAD_SPEECH if voice is detected
*
*/
vad_state_t vad_process(vad_handle_t inst, int16_t *data);
/**
* @brief Free the VAD instance
*
* @param inst The instance of VAD.
*
* @return None
*
*/
void vad_destroy(vad_handle_t inst);
/*
* Programming Guide:
*
* @code{c}
* vad_handle_t vad_inst = vad_create(VAD_MODE_3, SAMPLE_RATE_HZ, VAD_FRAME_LENGTH_MS); // Creates an instance to the VAD structure.
*
* while (1) {
* //Use buffer to receive the audio data from MIC.
* vad_state_t vad_state = vad_process(vad_inst, buffer); // Feed samples to the VAD process and get the result.
* }
*
* vad_destroy(vad_inst); // Free the VAD instance at the end of whole VAD process
*
* @endcode
*/
#ifdef __cplusplus
extern "C" {
#endif
#endif //_ESP_VAD_H_

View File

@ -0,0 +1,16 @@
COMPONENT_ADD_INCLUDEDIRS := lib/include \
wake_word_engine/include \
acoustic_algorithm/include \
LIB_FILES := $(shell ls $(COMPONENT_PATH)/wake_word_engine/lib*.a) \
$(shell ls $(COMPONENT_PATH)/lib/lib*.a) \
$(shell ls $(COMPONENT_PATH)/acoustic_algorithm/lib*.a) \
LIBS := $(patsubst lib%.a,-l%,$(LIB_FILES))
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/lib \
-L$(COMPONENT_PATH)/wake_word_engine \
-L$(COMPONENT_PATH)/acoustic_algorithm \
$(LIBS)

View File

@ -0,0 +1,11 @@
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := .
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
ALL_LIB_FILES += $(LIB_FILES)

View File

@ -0,0 +1,328 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_H
#define DL_LIB_H
#include "dl_lib_matrix.h"
#include "dl_lib_matrixq.h"
typedef int padding_state;
/**
* @brief Does a fast version of the exp() operation on a floating point number.
*
* As described in https://codingforspeed.com/using-faster-exponential-approximation/
* Should be good til an input of 5 or so with a steps factor of 8.
*
* @param in Floating point input
* @param steps Approximation steps. More is more precise. 8 or 10 should be good enough for most purposes.
* @return Exp()'ed output
*/
fptp_t fast_exp(double x, int steps);
/**
* @brief Does a softmax operation on a matrix.
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_softmax(const dl_matrix2d_t *in, dl_matrix2d_t *out);
/**
* @brief Does a softmax operation on a quantized matrix.
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_softmax_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
/**
* @brief Does a sigmoid operation on a floating point number
*
* @param in Floating point input
* @return Sigmoid output
*/
fptp_t dl_sigmoid_op(fptp_t in);
/**
* @brief Does a sigmoid operation on a matrix.
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_sigmoid(const dl_matrix2d_t *in, dl_matrix2d_t *out);
/**
* @brief Does a tanh operation on a floating point number
*
* @param in Floating point input number
* @return Tanh value
*/
fptp_t dl_tanh_op(fptp_t v);
/**
* @brief Does a tanh operation on a matrix.
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_tanh(const dl_matrix2d_t *in, dl_matrix2d_t *out);
/**
* @brief Does a relu (Rectifier Linear Unit) operation on a floating point number
*
* @param in Floating point input
* @param clip If value is higher than this, it will be clipped to this value
* @return Relu output
*/
fptp_t dl_relu_op(fptp_t in, fptp_t clip);
/**
* @brief Does a ReLu operation on a matrix.
*
* @param in Input matrix
* @param clip If values are higher than this, they will be clipped to this value
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_relu(const dl_matrix2d_t *in, fptp_t clip, dl_matrix2d_t *out);
/**
* @brief Fully connected layer operation
*
* @param in Input vector
* @param weight Weights of the neurons
* @param bias Biases for the neurons. Can be NULL if a bias of 0 is required.
* @param out Output array. Outputs are placed here. Needs to be an initialized, weight->w by in->h in size, matrix.
*/
void dl_fully_connect_layer(const dl_matrix2d_t *in, const dl_matrix2d_t *weight, const dl_matrix2d_t *bias, dl_matrix2d_t *out);
/**
* @brief Pre-calculate the sqrtvari variable for the batch_normalize function.
* The sqrtvari matrix depends on the variance and epsilon values, which normally are constant. Hence,
* this matrix only needs to be calculated once. This function does that.
*
* @param
* @return
*/
void dl_batch_normalize_get_sqrtvar(const dl_matrix2d_t *variance, fptp_t epsilon, dl_matrix2d_t *out);
/**
* @brief Batch-normalize a matrix
*
* @param m The matrix to normalize
* @param offset Offset matrix
* @param scale Scale matrix
* @param mean Mean matrix
* @param sqrtvari Matrix precalculated using dl_batch_normalize_get_sqrtvar
* @return
*/
void dl_batch_normalize(dl_matrix2d_t *m, const dl_matrix2d_t *offset, const dl_matrix2d_t *scale,
const dl_matrix2d_t *mean, const dl_matrix2d_t *sqrtvari);
/**
* @brief Do a basic LSTM layer pass.
*
* @warning Returns state_h pointer, so do not free result.
* @param in Input vector
* @param state_c Internal state of the LSTM network
* @param state_h Internal state (previous output values) of the LSTM network
* @param weights Weights for the neurons
* @param bias Bias for the neurons. Can be NULL if no bias is required
* @return Output values of the neurons
*/
dl_matrix2d_t *dl_basic_lstm_layer(const dl_matrix2d_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
const dl_matrix2d_t *weight, const dl_matrix2d_t *bias);
/**
* @brief Do a basic LSTM layer pass, partial quantized version.
* This LSTM function accepts 16-bit fixed-point weights and 32-bit float-point bias.
*
* @warning Returns state_h pointer, so do not free result.
* @param in Input vector
* @param state_c Internal state of the LSTM network
* @param state_h Internal state (previous output values) of the LSTM network
* @param weights Weights for the neurons, need to be quantised
* @param bias Bias for the neurons. Can be NULL if no bias is required
* @return Output values of the neurons
*/
dl_matrix2dq_t *dl_basic_lstm_layer_quantised_weights(const dl_matrix2d_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
const dl_matrix2dq_t *weight, const dl_matrix2d_t *bias);
/**
* @brief Do a fully-connected layer pass, fully-quantized version.
*
* @param in Input vector
* @param weight Weights of the neurons
* @param bias Bias values of the neurons. Can be NULL if no bias is needed.
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
* @return Output values of the neurons
*/
void dl_fully_connect_layer_q(const dl_matrix2dq_t *in, const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, dl_matrix2dq_t *out, int shift);
/**
* @brief Do a basic LSTM layer pass, fully-quantized version
*
* @warning Returns state_h pointer, so do not free result.
* @param in Input vector
* @param state_c Internal state of the LSTM network
* @param state_h Internal state (previous output values) of the LSTM network
* @param weights Weights for the neurons
* @param bias Bias for the neurons. Can be NULL if no bias is required
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
* @return Output values of the neurons
*/
dl_matrix2dq_t *dl_basic_lstm_layer_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *state_c, dl_matrix2dq_t *state_h,
const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, int shift);
/**
* @brief Batch-normalize a matrix, fully-quantized version
*
* @param m The matrix to normalize
* @param offset Offset matrix
* @param scale Scale matrix
* @param mean Mean matrix
* @param sqrtvari Matrix precalculated using dl_batch_normalize_get_sqrtvar
* @param shift Number of bits to shift the result back by. See dl_lib_matrixq.h for more info
* @return
*/
void dl_batch_normalize_q(dl_matrix2dq_t *m, const dl_matrix2dq_t *offset, const dl_matrix2dq_t *scale,
const dl_matrix2dq_t *mean, const dl_matrix2dq_t *sqrtvari, int shift);
/**
* @brief Does a relu (Rectifier Linear Unit) operation on a fixed-point number
* This accepts and returns fixed-point 32-bit number with the last 15 bits being the bits after the decimal
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
*
* @param in Fixed-point input
* @param clip If value is higher than this, it will be clipped to this value
* @return Relu output
*/
qtp_t dl_relu_q_op(qtp_t in, qtp_t clip);
/**
* @brief Does a ReLu operation on a matrix, quantized version
*
* @param in Input matrix
* @param clip If values are higher than this, they will be clipped to this value
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_relu_q(const dl_matrix2dq_t *in, fptp_t clip, dl_matrix2dq_t *out);
/**
* @brief Does a sigmoid operation on a fixed-point number.
* This accepts and returns a fixed-point 32-bit number with the last 15 bits being the bits after the decimal
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
*
* @param in Fixed-point input
* @return Sigmoid output
*/
int dl_sigmoid_op_q(const int in);
/**
* @brief Does a sigmoid operation on a matrix, quantized version
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_sigmoid_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
/**
* @brief Does a tanh operation on a matrix, quantized version
*
* @param in Input matrix
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_tanh_q(const dl_matrix2dq_t *in, dl_matrix2dq_t *out);
/**
* @brief Does a tanh operation on a fixed-point number.
* This accepts and returns a fixed-point 32-bit number with the last 15 bits being the bits after the decimal
* point. (Equivalent to a mantissa in a quantized matrix with exponent -15.)
*
* @param in Fixed-point input
* @return tanh output
*/
int dl_tanh_op_q(int v);
/**
* @brief Filter out the number greater than clip in the matrix, quantized version
*
* @param in Input matrix
* @param clip If values are higher than this, they will be clipped to this value
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_minimum(const dl_matrix2d_t *in, fptp_t clip, dl_matrix2d_t *out);
/**
* @brief Filter out the number greater than clip in the matrix, float version
*
* @param in Input matrix
* @param clip If values are higher than this, they will be clipped to this value
* @param out Output matrix. Can be the same as the input matrix; if so, output results overwrite the input.
*/
void dl_minimum_q(const dl_matrix2dq_t *in, fptp_t clip, dl_matrix2dq_t *out);
/**
* @brief Do a basic CNN layer pass.
*
* @Warning This just supports the single channel input image, and the output is single row matrix.
That is to say, the height of output is 1, and the weight of output is out_channels*out_image_width*out_image_height
*
* @param in Input single channel image
* @param weight Weights of the neurons, weight->w = out_channels, weight->h = filter_width*filter_height
* @param bias Bias for the CNN layer.
* @param filter_height The height of convolution kernel
* @param filter_width The width of convolution kernel
* @param out_channels The number of output channels of convolution kernel
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param pad One of `"VALID"` or `"SAME"`, 0 is "VALID" and the other is "SAME"
* @param out The result of CNN layer, out->h=1.
* @return The result of CNN layer.
*/
dl_matrix2d_t *dl_basic_conv_layer(const dl_matrix2d_t *in, const dl_matrix2d_t *weight, const dl_matrix2d_t *bias, int filter_width, int filter_height,
const int out_channels, const int stride_x, const int stride_y, padding_state pad, const dl_matrix2d_t* out);
/**
* @brief Do a basic CNN layer pass, quantised wersion.
*
* @Warning This just supports the single channel input image, and the output is single row matrix.
That is to say, the height of output is 1, and the weight of output is out_channels*out_image_width*out_image_height
*
* @param in Input single channel image
* @param weight Weights of the neurons, weight->w = out_channels, weight->h = filter_width*filter_height,
* @param bias Bias of the neurons.
* @param filter_height The height of convolution kernel
* @param filter_width The width of convolution kernel
* @param out_channels The number of output channels of convolution kernel
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param pad One of `"VALID"` or `"SAME"`, 0 is "VALID" and the other is "SAME"
* @param out The result of CNN layer, out->h=1
* @return The result of CNN layer
*/
dl_matrix2d_t *dl_basic_conv_layer_quantised_weight(const dl_matrix2d_t *in, const dl_matrix2dq_t *weight, const dl_matrix2d_t *bias, int filter_width, int filter_height,
const int out_channels, const int stride_x, const int stride_y, padding_state pad, const dl_matrix2d_t* out);
#endif

View File

@ -0,0 +1,67 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_COEFGETTER_IF_H
#define DL_LIB_COEFGETTER_IF_H
#include "dl_lib_matrix.h"
#include "dl_lib_matrixq.h"
//Set this if the coefficient requested is a batch-normalization popvar matrix which needs to be preprocessed by
//dl_batch_normalize_get_sqrtvar first.
#define COEF_GETTER_HINT_BNVAR (1<<0)
/*
This struct describes the basic information of model data:
word_num: the number of wake words or speech commands
word_list: the name list of wake words or speech commands
thres_list: the threshold list of wake words or speech commands
info_str: the string used to reflect the version and information of model data
which consist of the architecture of network, the version of model data, wake words and their threshold
*/
typedef struct {
int word_num;
char **word_list;
int *win_list;
float *thresh_list;
char *info_str;
} model_info_t;
/*
Alphabet struct describes the basic grapheme or phoneme.
item_num: the number of baisc item(grapheme or phonemr)
items: the list of basic item
*/
typedef struct {
int item_num;
char **items;
}alphabet_t;
/*
This struct describes a generic coefficient getter: a way to get the constant coefficients needed for a neural network.
For the two getters, the name describes the name of the coefficient matrix, usually the same as the Numpy filename the
coefficient was originally stored in. The arg argument can be used to optionally pass an additional user-defined argument
to the getter (e.g. the directory to look for files in the case of the Numpy file loader getter). The hint argument
is a bitwise OR of the COEF_GETTER_HINT_* flags or 0 when none is needed. Use the free_f/free_q functions to release the
memory for the returned matrices, when applicable.
*/
typedef struct {
const dl_matrix2d_t* (*getter_f)(const char *name, void *arg, int hint);
const dl_matrix2dq_t* (*getter_q)(const char *name, void *arg, int hint);
void (*free_f)(const dl_matrix2d_t *m);
void (*free_q)(const dl_matrix2dq_t *m);
const model_info_t* (*getter_info)(void *arg);
const alphabet_t* (*getter_alphabet)(void *arg);
} model_coeff_getter_t;
#endif

View File

@ -0,0 +1,164 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_CONV_QUEUE_H
#define DL_LIB_CONV_QUEUE_H
#include "dl_lib_matrix.h"
typedef float fptp_t;
//Flags for matrices
#define DL_MF_FOREIGNDATA (1<<0) /*< Matrix *item data actually points to another matrix and should not be freed */
//Float convolution FIFO queue.
typedef struct {
int n; /*< the length of queue */
int c; /*< the channel number of queue element*/
int front; /*< the front(top) position of queue */
int flag; /*< not used*/
fptp_t *item; /*< Pointer to item array */
} dl_conv_queue_t;
/**
* @brief Allocate a convolution queue
*
* @param n The length of queue
* @param c The channel number of elements in the queue
* @return The convolution queue, or NULL if out of memory
*/
dl_conv_queue_t *dl_conv_queue_alloc(int n, int c);
/**
* @brief Free a convolution queue
*
* @param cq The convolution queue to free
*/
void dl_conv_queue_free(dl_conv_queue_t *cq);
void dl_conv_to_matrix2d(dl_conv_queue_t *cq, dl_matrix2d_t* out);
/**
* @brief Move the front pointer of queue forward,
the First(oldest) element become the last(newest) element,
*
* @param cq Input convolution queue
* @return Pointer of oldest element
*/
fptp_t *dl_conv_queue_pop(dl_conv_queue_t *cq);
/**
* @brief Remove the oldest element, then insert the input element at the end of queue
*
* @param cq Input convolution queue
* @param item The new element
*/
void dl_conv_queue_push(dl_conv_queue_t *cq, fptp_t* item);
/**
* @brief Get the pointer of element in the queue by offset
*
* @param cq Input convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
fptp_t *dl_get_queue_item(dl_conv_queue_t *cq, int offset);
/**
* @brief Does a sigmoid operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, and does a sigmoid operation
* by this pointer, then return the pointer
*
* @param cq Input convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
fptp_t *dl_sigmoid_step(dl_conv_queue_t *cq, int offset);
/**
* @brief Does a tanh operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, and does a tanh operation
* by this pointer, then return the pointer
*
* @param cq Input convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
fptp_t *dl_tanh_step(dl_conv_queue_t *cq, int offset);
/**
* @brief Does a softmax operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, and does a softmax operation
* by this pointer, then return the pointer
*
* @param cq Input convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
fptp_t *dl_softmax_step(dl_conv_queue_t *cq, int offset);
fptp_t *dl_relu_step(dl_conv_queue_t *cq, int offset);
fptp_t *dl_relu_look(dl_matrix2d_t *cq, int offset);
dl_matrix2d_t *dl_matrix_concat1(const dl_conv_queue_t *a, const dl_matrix2d_t *b);
dl_matrix2d_t *dl_basic_lstm_layer1(const dl_conv_queue_t *in, dl_matrix2d_t *state_c, dl_matrix2d_t *state_h,
const dl_matrix2d_t *weight, const dl_matrix2d_t *bias);
/**
* @brief Fast implement for 1D atrous convolution (a.k.a. convolution with holes or dilated convolution)
* based on convolution queue.
*
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
* is first element of output queue and should not be freed separately.
*
* @param in Input convolution queue
* @param out Output convolution queue
* @param rate A positive int, the stride with which we sample input value
* @param size A positive int, the size of 1D-filter
* @param kernel The kernel matrix of filter
* @param bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
* @return The result of atrous convolution
*/
fptp_t *dl_atrous_conv1d_step(dl_conv_queue_t *in, dl_conv_queue_t *out, int rate, int size,
dl_matrix2d_t* kernel, dl_matrix2d_t* bias);
fptp_t *dl_look_conv_step(dl_conv_queue_t *in, dl_matrix2d_t *out, int rate, int size,
dl_matrix2d_t* kernel, dl_matrix2d_t* bias);
/**
* @brief Fast implement of dilation layer as follows
*
* |-> [gate(sigmoid)] -|
* input - | |-> (*) - output
* |-> [filter(tanh)] -|
*
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
* is first element of output queue and should not be freed separately.
*
* @param in Input convolution queue
* @param out Output convolution queue
* @param rate A positive int, the stride with which we sample input value
* @param size A positive int, the size of 1D-filter
* @param filter_kernel The kernel matrix of filter
* @param filter_bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
* @param gate_kernel The kernel matrix of gate
* @param gate_bias The bias matrix of gate. Can be NULL if a bias of 0 is required.
* @return The result of dilation layer
*/
fptp_t *dl_dilation_layer(dl_conv_queue_t *in, dl_conv_queue_t *out, int rate, int size,
dl_matrix2d_t* filter_kernel, dl_matrix2d_t* filter_bias,
dl_matrix2d_t* gate_kernel, dl_matrix2d_t* gate_bias);
void test_atrous_conv(int size, int rate, int in_channel, int out_channel);
#endif

View File

@ -0,0 +1,174 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_CONVQ_QUEUE_H
#define DL_LIB_CONVQ_QUEUE_H
#include "dl_lib_matrixq.h"
#include "dl_lib_conv_queue.h"
//fixed-point convolution FIFO queue.
typedef struct {
int n; /*< the length of queue */
int c; /*< the channel number of queue element*/
int front; /*< the front(top) position of queue */
int flag; /*< not used */
int exponent; /*< The values in items should be multiplied by pow(2,exponent)
to get the real values */
qtp_t *itemq; /*< Pointer to item array */
} dl_convq_queue_t;
/**
* @brief Allocate a fixed-point convolution queue
*
* @param n The length of queue
* @param c The channel number of elements in the queue
* @return The convolution queue, or NULL if out of memory
*/
dl_convq_queue_t *dl_convq_queue_alloc(int n, int c);
void dl_convq_to_matrix2dq(dl_convq_queue_t *cq, dl_matrix2dq_t* out, int row);
/**
* @brief Free a fixed-point convolution queue
*
* @param cq The fixed-point convolution queue to free
*/
void dl_convq_queue_free(dl_convq_queue_t *cq);
/**
* @brief Move the front pointer of queue forward,
the First(oldest) element become the last(newest) element,
*
* @param cq Input fixed-point convolution queue
* @return Pointer of oldest element
*/
qtp_t *dl_convq_queue_pop(dl_convq_queue_t *cq);
/**
* @brief Remove the oldest element, then insert the input element at the end of queue
*
* @param cq Input fixed-point convolution queue
* @param item The new element
*/
void dl_convq_queue_push(dl_convq_queue_t *cq, dl_matrix2dq_t *a, int shift);
/**
* @brief Insert the float-point element at the end of queue.
* The precision of fixed-point numbers is described by the Qm.f notation,
*
* @param cq Input fixed-point convolution queue
* @param item The float-point element
* @param m_bit The number of integer bits including the sign bits
* @param f_bit The number of fractional bits
*/
void dl_convq_queue_push_by_qmf(dl_convq_queue_t *cq, fptp_t* item, int m_bit, int f_bit);
/**
* @brief Get the pointer of element in the queue by offset
*
* @param cq Input fixed-point convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
qtp_t *dl_get_queue_itemq(dl_convq_queue_t *cq, int offset);
/**
* @brief Does a tanh operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, and does a
* tanh operation by this pointer, then return the pointer
*
* @param cq Input fixed-point convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
void dl_tanh_convq(dl_convq_queue_t *cq, int last_num);
/**
* @brief Does a relu operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, and does a
* relu operation by this pointer, then return the pointer
*
* @param cq Input fixed-point convolution queue
* @param offset Offset from the front of the queue
* @return Pointer of the element
*/
void dl_relu_convq(dl_convq_queue_t *cq, fptp_t clip, int last_num);
/**
* @brief Does a softmax operation on the one of element in the convolution queue.
* Gets the pointer of element in the convolution queue by offset, input data
stay as it is. Results are saved into the *out* array.
*
* @param cq Input fixed-point convolution queue
* @param offset Offset from the front of the queue
* @param out Old array to re-use. Passing NULL will allocate a new matrix.
* @return softmax results
*/
fptp_t * dl_softmax_step_q(dl_convq_queue_t *cq, int offset, fptp_t *out);
/**
* @brief Fast and quantised implement for 1D atrous convolution (a.k.a. convolution with holes or dilated convolution)
* based on convolution queue.
*
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
* is last element of output queue and should not be freed separately.
*
* @param in Input fixed-point convolution queue
* @param out Output fixed-point convolution queue
* @param rate A positive int, the stride with which we sample input value
* @param size A positive int, the size of 1D-filter
* @param kernel The kernel matrix of filter
* @param bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
* @param shift Shift ratio used in dot operation between two 16-bit fixed point vector
* @return The result of atrous convolution
*/
qtp_t *dl_atrous_conv1dq(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
dl_matrix2dq_t* kernel, dl_matrix2dq_t* bias, int shift);
qtp_t *dl_atrous_conv1dq_steps(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
dl_matrix2dq_t* kernel, dl_matrix2dq_t* bias, int shift, int offset);
/**
* @brief Fast implement of dilation layer as follows
*
* |-> [gate(sigmoid)] -|
* input - | |-> (*) - output
* |-> [filter(tanh)] -|
*
* @Warning All input and output convolution queue and matrix should be allocated. The return pointer
* is last element of output queue and should not be freed separately.
*
* @param in Input fixed-point convolution queue
* @param out Output fixed-point convolution queue
* @param rate A positive int, the stride with which we sample input value
* @param size A positive int, the size of 1D-filter
* @param filter_kernel The kernel matrix of filter
* @param filter_bias The bias matrix of filter. Can be NULL if a bias of 0 is required.
* @param gate_kernel The kernel matrix of gate
* @param gate_bias The bias matrix of gate. Can be NULL if a bias of 0 is required.
* @filter_shift Shift ratio used in filter operation between two 16-bit fixed point vector
* @gate_shift Shift ratio used in gate operation between two 16-bit fixed point vector
* @return The result of dilation layer
*/
qtp_t *dl_dilation_layerq(dl_convq_queue_t *in, dl_convq_queue_t *out, int rate, int size,
dl_matrix2dq_t* filter_kernel, dl_matrix2dq_t* filter_bias,
dl_matrix2dq_t* gate_kernel, dl_matrix2dq_t* gate_bias,
int filter_shift, int gate_shift);
dl_matrix2dq_t *dl_basic_lstm_layer1_q(const dl_convq_queue_t *in, dl_matrix2dq_t *state_c, dl_matrix2dq_t *state_h,
const dl_matrix2dq_t *weight, const dl_matrix2dq_t *bias, int step, int shift);
void test_atrous_convq(int size, int rate, int in_channel, int out_channel);
dl_conv_queue_t *dl_convq_queue_add(dl_convq_queue_t *cq1, dl_convq_queue_t *cq2);
#endif

View File

@ -0,0 +1,236 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_MATRIX_H
#define DL_LIB_MATRIX_H
#if CONFIG_BT_SHARE_MEM_REUSE
#include "freertos/FreeRTOS.h"
#endif
typedef float fptp_t;
#if CONFIG_BT_SHARE_MEM_REUSE
extern multi_heap_handle_t gst_heap;
#endif
//Flags for matrices
#define DL_MF_FOREIGNDATA (1<<0) /*< Matrix *item data actually points to another matrix and should not be freed */
//'Normal' float matrix
typedef struct {
int w; /*< Width */
int h; /*< Height */
int stride; /*< Row stride, essentially how many items to skip to get to the same position in the next row */
int flags; /*< Flags. OR of DL_MF_* values */
fptp_t *item; /*< Pointer to item array */
} dl_matrix2d_t;
//Macro to quickly access the raw items in a matrix
#define DL_ITM(m, x, y) m->item[(x)+(y)*m->stride]
/**
* @brief Allocate a matrix
*
* @param w Width of the matrix
* @param h Height of the matrix
* @return The matrix, or NULL if out of memory
*/
dl_matrix2d_t *dl_matrix_alloc(int w, int h);
/**
* @brief Free a matrix
* Frees the matrix structure and (if it doesn't have the DL_MF_FOREIGNDATA flag set) the m->items space as well.
*
* @param m Matrix to free
*/
void dl_matrix_free(dl_matrix2d_t *m);
/**
* @brief Zero out the matrix
* Sets all entries in the matrix to 0.
*
* @param m Matrix to zero
*/
void dl_matrix_zero(dl_matrix2d_t *m);
/**
* @brief Generate a new matrix using a range of items from an existing matrix.
* When using this, the data of the new matrix is not allocated/copied but it re-uses a pointer
* to the existing data. Changing the data in the resulting matrix, as a result, will also change
* the data in the existing matrix that has been sliced.
*
* @param x X-offset of the origin of the returned matrix within the sliced matrix
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
* @param w Width of the resulting matrix
* @param h Height of the resulting matrix
* @param in Old matrix (with foreign data) to re-use. Passing NULL will allocate a new matrix.
* @return The resulting slice matrix, or NULL if out of memory
*/
dl_matrix2d_t *dl_matrix_slice(const dl_matrix2d_t *src, int x, int y, int w, int h, dl_matrix2d_t *in);
/**
* @brief select a range of items from an existing matrix and flatten them into one dimension.
*
* @Warning The results are flattened in row-major order.
*
* @param x X-offset of the origin of the returned matrix within the sliced matrix
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
* @param w Width of the resulting matrix
* @param h Height of the resulting matrix
* @param in Old matrix to re-use. Passing NULL will allocate a new matrix.
* @return The resulting flatten matrix, or NULL if out of memory
*/
dl_matrix2d_t *dl_matrix_flatten(const dl_matrix2d_t *src, int x, int y, int w, int h, dl_matrix2d_t *in);
/**
* @brief Generate a matrix from existing floating-point data
*
* @param w Width of resulting matrix
* @param h Height of resulting matrix
* @param data Data to populate matrix with
* @return A newaly allocated matrix populated with the given input data, or NULL if out of memory.
*/
dl_matrix2d_t *dl_matrix_from_data(int w, int h, int stride, const void *data);
/**
* @brief Multiply a pair of matrices item-by-item: res=a*b
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Multiplicated data. Can be equal to a or b to overwrite that.
*/
void dl_matrix_mul(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *res);
/**
* @brief Do a dotproduct of two matrices : res=a.b
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
*/
void dl_matrix_dot(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *res);
/**
* @brief Add a pair of matrices item-by-item: res=a-b
*
* @param a First matrix
* @param b Second matrix
* @param res Added data. Can be equal to a or b to overwrite that.
*/
void dl_matrix_add(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
/**
* @brief Divide a pair of matrices item-by-item: res=a/b
*
* @param a First matrix
* @param b Second matrix
* @param res Divided data. Can be equal to a or b to overwrite that.
*/
void dl_matrix_div(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
/**
* @brief Subtract a matrix from another, item-by-item: res=a-b
*
* @param a First matrix
* @param b Second matrix
* @param res Subtracted data. Can be equal to a or b to overwrite that.
*/
void dl_matrix_sub(const dl_matrix2d_t *a, const dl_matrix2d_t *b, dl_matrix2d_t *out);
/**
* @brief Add a constant to every item of the matrix
*
* @param subj Matrix to add the constant to
* @param add The constant
*/
void dl_matrix_add_const(dl_matrix2d_t *subj, const fptp_t add);
/**
* @brief Concatenate the rows of two matrices into a new matrix
*
* @param a First matrix
* @param b Second matrix
* @return A newly allocated array with as avlues a|b
*/
dl_matrix2d_t *dl_matrix_concat(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
/**
* @brief Print the contents of a matrix to stdout. Used for debugging.
*
* @param a The matrix to print.
*/
void dl_printmatrix(const dl_matrix2d_t *a);
/**
* @brief Return the average square error given a correct and a test matrix.
*
* ...Well, more or less. If anything, it gives an indication of the error between
* the two. Check the code for the exact implementation.
*
* @param a First of the two matrices to compare
* @param b Second of the two matrices to compare
* @return value indicating the relative difference between matrices
*/
float dl_matrix_get_avg_sq_err(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
/**
* @brief Check if two matrices have the same shape, that is, the same amount of rows and columns
*
* @param a First of the two matrices to compare
* @param b Second of the two matrices to compare
* @return true if the two matrices are shaped the same, false otherwise.
*/
int dl_matrix_same_shape(const dl_matrix2d_t *a, const dl_matrix2d_t *b);
/**
* @brief Get a specific item from the matrix
*
* Please use these for external matrix access instead of DL_ITM
*
* @param m Matrix to access
* @param x Column address
* @param y Row address
* @return Value in that position
*/
inline static fptp_t dl_matrix_get(const dl_matrix2d_t *m, const int x, const int y) {
return DL_ITM(m, x, y);
}
/**
* @brief Set a specific item in the matrix to the given value
*
* Please use these for external matrix access instead of DL_ITM
*
* @param m Matrix to access
* @param x Column address
* @param y Row address
* @param val Value to write to that position
*/
inline static void dl_matrix_set(dl_matrix2d_t *m, const int x, const int y, fptp_t val) {
DL_ITM(m, x, y)=val;
}
#endif

View File

@ -0,0 +1,372 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DL_LIB_MATRIXQ_H
#define DL_LIB_MATRIXQ_H
#include <stdint.h>
#include "dl_lib_matrix.h"
typedef int16_t qtp_t;
//Quantized matrix. Uses fixed numbers and has the storage for the rows/columns inverted
//for easy use as a multiplicand without stressing out the flash cache too much.
typedef struct {
int w;
int h;
int stride; //Normally equals h, not w!
int flags;
int exponent; //The values in items should be multiplied by pow(2,exponent) to get the real values.
qtp_t *itemq;
} dl_matrix2dq_t;
#define DL_QTP_SHIFT 15
#define DL_QTP_RANGE ((1<<DL_QTP_SHIFT)-1)
#define DL_ITMQ(m, x, y) m->itemq[(y)+(x)*m->stride]
#define DL_QTP_EXP_NA 255 //non-applicable exponent because matrix is null
#define DL_SHIFT_AUTO 32
/**
* @info About quantized matrices and shift values
*
* Grab a coffee (or tea, or hot water) and sit down when you read this for the first
* time. Quantized matrices can speed up your operations, but come with some quirks, and
* it's good to understand how they work before using them.
*
* The data in the quantized matrix type is stored similarily to floating-point types:
* when storing a real value, the value is stored as a mantissa (base number) and an
* exponent. The 'real' value that can be re-derived from those two numbers is something
* similar to mantissa*2^exponent. Up to this point, there's not that much difference from
* the standard floating point implementations like e.g. IEEE-754.
*
* The difference with respect to quantized matrices is that for a quantized matrix, it is
* assumed all values stored have more-or-less the same order of magnitude. This allows the
* matrix to only store all the mantissas, while the exponents are shared; there is only one
* exponent for the entire matrix. This makes it quicker to handle matrix operations - the
* logic to fix the exponents only needs to happen once, while the rest can be done in simple
* integer arithmetic. It also nets us some memory savings - while normally a floating point
* number is 32-bit, storing only 16-bit mantissas as the matrix items almost halves the
* memory requirements.
*
* While most of the details of handling the intricacies of the quantized matrixes are done
* transparently by the code in dl_lib_matrixq.c, some implementation details leak out,
* specifically in places where addition/subtraction/division happens.
*
* The problem is that the routines do not know what the size of the resulting operation is. For
* instance, when adding two matrices of numbers, the resulting numbers *could* be large enough
* to overflow the mantissa of the result if the exponent is the same. However, if by default we
* assume the mantissas needs to be scaled back, we may lose precision.
*
* In order to counter this, all operations that have this issue have a ``shift`` argument. If
* the argument is zero, the routine will be conservative, that is, increase the exponent of
* the result to such an extent it's mathematically impossible a value in the result will exceed
* the maximum value that can be stored. However, when this argument is larger than zero, the
* algorithm will hold back on this scaling by the indicated amount of bits, preserving precision
* but increasing the chance of some of the calculated values not fitting in the mantissa anymore.
* If this happens, the value will be clipped to the largest (or, for negative values, smallest)
* value possible. (Neural networks usually are okay with this happening for a limited amount
* of matrix indices).
*
* For deciding on these shift values, it is recommended to start with a shift value of one, then
* use dl_matrixq_check_sanity on the result. If this indicates clipping, lower the shift value.
* If it indicates bits are under-used, increase it. Note that for adding and subtraction, only
* shift values of 0 or 1 make sense; these routines will error out if you try to do something
* else.
*
* For neural networks and other noise-tolerant applications, note that even when
* dl_matrixq_check_sanity does not indicate any problems, twiddling with the shift value may lead
* to slightly improved precision. Feel free to experiment.
**/
/**
* @brief Allocate a matrix
*
* @param w Width of the matrix
* @param h Height of the matrix
* @return The matrix, or NULL if out of memory
*/
dl_matrix2dq_t *dl_matrixq_alloc(int w, int h);
/**
* @brief Convert a floating-point matrix to a quantized matrix
*
* @param m Floating-point matrix to convert
* @param out Quantized matrix to re-use. If NULL, allocate a new one.
* @Return The quantized version of the floating-point matrix
*/
dl_matrix2dq_t *dl_matrixq_from_matrix2d(const dl_matrix2d_t *m, dl_matrix2dq_t *out);
/**
* TODO: DESCRIBE THIS FUNCTION
*/
dl_matrix2dq_t *dl_matrixq_from_matrix2d_by_qmf(const dl_matrix2d_t *m, dl_matrix2dq_t *out, int m_bit, int f_bit);
/**
* @brief Convert a quantized matrix to a floating-point one.
*
* @param m Floating-point matrix to convert
* @param out Quantized matrix to re-use. If NULL, allocate a new one.
* @Return The quantized version of the floating-point matrix
**/
dl_matrix2d_t *dl_matrix2d_from_matrixq(const dl_matrix2dq_t *m, dl_matrix2d_t *out);
/**
* @brief Free a quantized matrix
* Frees the matrix structure and (if it doesn't have the DL_MF_FOREIGNDATA flag set) the m->items space as well.
*
* @param m Matrix to free
*/
void dl_matrixq_free(dl_matrix2dq_t *m);
/**
* @brief Zero out the matrix
* Sets all entries in the matrix to 0.
*
* @param m Matrix to zero
*/
void dl_matrixq_zero(dl_matrix2dq_t *m);
/**
* @brief Do a dotproduct of two quantized matrices : res=a.b, Result is a fixed-point matrix.
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
* @param shift Shift ratio
*/
void dl_matrixq_dot(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
/**
* @brief Do a dotproduct of two quantized matrices: res=a.b, Result is a floating-point matrix.
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
*/
void dl_matrixq_dot_matrix_out(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
/**
* @brief Do a dotproduct of two quantized matrices : res=a.b. This always uses the simple & stupid C algo for the dot product.
*
* Result is a fixed-point matrix.
*
* Use this only if you expect something is wrong with the accelerated routines that dl_matrixq_dot calls; this function can be
* much slower than dl_matrixq_dot .
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
* @param shift Shift ratio
*/
void dl_matrixq_dot_c_impl(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
/**
* @brief Do a dotproduct of two quantized matrices : res=a.b. This always uses the simple & stupid C algo for the dot product.
*
* Result is a floating-point matrix.
*
* Use this only if you expect something is wrong with the accelerated routines that dl_matrixq_dot_matrix_out calls; this function can be
* much slower than dl_matrixq_dot_matrix_out.
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Dotproduct data. *Must* be a *different* matrix from a or b!
*/
void dl_matrixq_dot_matrix_out_c_impl(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
/**
* @brief Do a dotproduct of a floating point and a quantized matrix. Result is a floating-point matrix.
*
* @param a First multiplicand; float matrix
* @param b Second multiplicand; quantized matrix
* @param res Dotproduct data; float matrix. *Must* be a *different* matrix from a or b!
*/
void dl_matrix_matrixq_dot(const dl_matrix2d_t *a, const dl_matrix2dq_t *b, dl_matrix2d_t *res);
/**
* @brief Print the contents of a quantized matrix to stdout. Used for debugging.
*
* @param a The matrix to print.
*/
void dl_printmatrixq(const dl_matrix2dq_t *a);
/**
* @brief Add a pair of quantizedmatrices item-by-item: res=a-b
*
* @param a First matrix
* @param b Second matrix
* @param res Added data. Can be equal to a or b to overwrite that.
* @param shift Shift value. Only 0 or 1 makes sense here. <ToDo: check>
*/
void dl_matrixq_add(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
/**
* @brief Generate a new matrix using a range of items from an existing matrix.
* When using this, the data of the new matrix is not allocated/copied but it re-uses a pointer
* to the existing data. Changing the data in the resulting matrix, as a result, will also change
* the data in the existing matrix that has been sliced.
*
* @Warning In contrast to the floating point equivalent of this function, the fixed-point version
* of this has the issue that as soon as the output exponent of one of the slices changes, the data
* in the sliced matrix gets corrupted (because the exponent of that matrix is still the same.) If you
* use this function, either treat the slices as read-only, or assume the sliced matrix contains
* garbage after modifying the data in one of the slices.
*
* @param x X-offset of the origin of the returned matrix within the sliced matrix
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
* @param w Width of the resulting matrix
* @param h Height of the resulting matrix
* @param in Old matrix (with foreign data) to re-use. Passing NULL will allocate a new matrix.
* @return The resulting slice matrix, or NULL if out of memory
*/
dl_matrix2dq_t *dl_matrixq_slice(const dl_matrix2dq_t *src, int x, int y, int w, int h, dl_matrix2dq_t *in);
/**
* @brief select a range of items from an existing matrix and flatten them into one dimension.
*
* @Warning The results are flattened in row-major order.
*
* @param x X-offset of the origin of the returned matrix within the sliced matrix
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
* @param w Width of the resulting matrix
* @param h Height of the resulting matrix
* @param in Old matrix to re-use. Passing NULL will allocate a new matrix.
* @return The resulting flatten matrix, or NULL if out of memory
*/
dl_matrix2dq_t *dl_matrixq_flatten(const dl_matrix2dq_t *src, int x, int y, int w, int h, dl_matrix2dq_t *in);
/**
* @brief Subtract a quantized matrix from another, item-by-item: res=a-b
*
* @param a First matrix
* @param b Second matrix
* @param res Subtracted data. Can be equal to a or b to overwrite that.
* @param shift Shift value. Only 0 or 1 makes sense here. <ToDo: check>
*/
void dl_matrixq_sub(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res, int shift);
/**
* @brief Multiply a pair of quantized matrices item-by-item: res=a*b
*
* @param a First multiplicand
* @param b Second multiplicand
* @param res Multiplicated data. Can be equal to a or b to overwrite that matrix.
*/
void dl_matrixq_mul(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *res);
/**
* @brief Divide a pair of quantized matrices item-by-item: res=a/b
*
* @param a First matrix
* @param b Second matrix
* @param res Divided data. Can be equal to a or b to overwrite that.
*/
void dl_matrixq_div(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b, dl_matrix2dq_t *out, int shift);
/**
* @brief Check if two quantized matrices have the same shape, that is, the same amount of
* rows and columns
*
* @param a First of the two matrices to compare
* @param b Second of the two matrices to compare
* @return true if the two matrices are shaped the same, false otherwise.
*/
int dl_matrixq_same_shape(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b);
/**
* @brief Concatenate the rows of two quantized matrices into a new matrix
*
* @param a First matrix
* @param b Second matrix
* @return A newly allocated quantized matrix with as values a|b
*/
dl_matrix2dq_t *dl_matrixq_concat(const dl_matrix2dq_t *a, const dl_matrix2dq_t *b);
/**
* @brief Add a constant to every item of the quantized matrix
*
* @param subj Matrix to add the constant to
* @param add The constant
*/
void dl_matrixq_add_const(dl_matrix2dq_t *subj, const fptp_t add, int shift);
/**
* @brief Check the sanity of a quantized matrix
*
* Due to the nature of quantized matrices, depending on the calculations a quantized
* matrix is the result of and the shift values chosen in those calculations, a quantized
* matrix may have an exponent and mantissas that lead to a loss of precision, either because
* most significant mantissa bits are unused, or because a fair amount of mantissas are
* clipped. This function checks if this is the case and will report a message to stdout
* if significant loss of precision is detected.
*
* @param m The quantized matrix to check
* @param name A string to be displayed in the message if the sanity check fails
* @return True if matrix is sane, false otherwise
**/
int dl_matrixq_check_sanity(dl_matrix2dq_t *m, const char *name);
/**
* @brief re-adjust the exponent of the matrix to fit the mantissa better
*
* This function will shift up all the data in the mantissas so there are no
* most-significant bits that are unused in all mantissas. It will also adjust
* the exponent to keep the actua values in the matrix the same.
*
* Some operations done on a matrix, especially operations that re-use the
* result of earlier operations done in the same way, can lead to the loss of
* data because the exponent of the quantized matrix is never re-adjusted. You
* can do that implicitely by calling this function.
*
* @param m The matrix to re-adjust
**/
void dl_matrixq_readjust_exp(dl_matrix2dq_t *m);
/**
* @brief Get the floating-point value of a specific item from the quantized matrix
*
* @param m Matrix to access
* @param x Column address
* @param y Row address
* @return Value in that position
*/
fptp_t dl_matrixq_get(const dl_matrix2dq_t *m, const int x, const int y);
/**
* @brief Set a specific item in the quantized matrix to the given
* floating-point value
*
* @warning If the given value is more than the exponent in the quantized matrix
* allows for, all mantissas in the matrix will be shifted down to make the value
* 'fit'. If, however, the exponent is such that the value would result in a
* quantized mantissa of 0, nothing is done.
*
* @param m Matrix to access
* @param x Column address
* @param y Row address
* @param val Value to write to that position
*/
void dl_matrixq_set(dl_matrix2dq_t *m, const int x, const int y, fptp_t val);
#endif

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,11 @@
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := .
LIB_FILES := $(shell ls $(COMPONENT_PATH)/lib*.a)
LIBS := $(patsubst lib%.a,-l%,$(notdir $(LIB_FILES)))
COMPONENT_ADD_LDFLAGS += -L$(COMPONENT_PATH)/ $(LIBS)
ALL_LIB_FILES += $(LIB_FILES)

View File

@ -1,6 +1,6 @@
#pragma once
#include "stdint.h"
#include "esp_err.h"
#include "dl_lib_coefgetter_if.h"
//Opaque model data container
typedef struct model_iface_data_t model_iface_data_t;
@ -19,12 +19,13 @@ typedef struct {
} wake_word_info_t;
/**
* @brief Easy function type to initialze a model instance with a detection mode
* @brief Easy function type to initialze a model instance with a detection mode and specified wake word coefficient
*
* @param det_mode The wake words detection mode to trigger wake words, the range of det_threshold is 0.5~0.9999
* @param det_mode The wake words detection mode to trigger wake words, DET_MODE_90 or DET_MODE_95
* @param model_coeff The specified wake word model coefficient
* @returns Handle to the model data
*/
typedef model_iface_data_t* (*esp_sr_iface_op_create_t)(det_mode_t det_mode);
typedef model_iface_data_t* (*esp_wn_iface_op_create_t)(const model_coeff_getter_t *model_coeff, det_mode_t det_mode);
/**
@ -36,7 +37,7 @@ typedef model_iface_data_t* (*esp_sr_iface_op_create_t)(det_mode_t det_mode);
* @param model The model object to query
* @return The amount of samples to feed the detect function
*/
typedef int (*esp_sr_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
typedef int (*esp_wn_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
/**
@ -45,7 +46,7 @@ typedef int (*esp_sr_iface_op_get_samp_chunksize_t)(model_iface_data_t *model);
* @param model The model object to query
* @return The sample rate, in hz
*/
typedef int (*esp_sr_iface_op_get_samp_rate_t)(model_iface_data_t *model);
typedef int (*esp_wn_iface_op_get_samp_rate_t)(model_iface_data_t *model);
/**
* @brief Get the number of wake words
@ -53,7 +54,7 @@ typedef int (*esp_sr_iface_op_get_samp_rate_t)(model_iface_data_t *model);
* @param model The model object to query
* @returns the number of wake words
*/
typedef int (*esp_sr_iface_op_get_word_num_t)(model_iface_data_t *model);
typedef int (*esp_wn_iface_op_get_word_num_t)(model_iface_data_t *model);
/**
* @brief Get the name of wake word by index
@ -64,18 +65,7 @@ typedef int (*esp_sr_iface_op_get_word_num_t)(model_iface_data_t *model);
* @param word_index The index of wake word
* @returns the detection threshold
*/
typedef char* (*esp_sr_iface_op_get_word_name_t)(model_iface_data_t *model, int word_index);
/**
* @brief Get the structure which contains the information about wake words
*
* @param model The model object to query
* @param word_list The structure which contains the number and name of wake words
* @return
* - ESP_OK Success
* - ESP_FAIL The word_list is NULL.
*/
typedef esp_err_t (*esp_sr_iface_op_get_word_list_t)(model_iface_data_t *model, wake_word_info_t* word_list);
typedef char* (*esp_wn_iface_op_get_word_name_t)(model_iface_data_t *model, int word_index);
/**
* @brief Set the detection threshold to manually abjust the probability
@ -85,20 +75,19 @@ typedef esp_err_t (*esp_sr_iface_op_get_word_list_t)(model_iface_data_t *model,
* @param word_index The index of wake word
* @return 0: setting failed, 1: setting success
*/
typedef int (*esp_sr_iface_op_set_det_threshold_t)(model_iface_data_t *model, float det_threshold, int word_index);
typedef int (*esp_wn_iface_op_set_det_threshold_t)(model_iface_data_t *model, float det_threshold, int word_index);
/**
* @brief Get the wake word detection threshold of different modes
*
* @param model The model object to query
* @param det_mode The wake words recognition operating mode
* @param word_index The index of wake word
* @returns the detection threshold
*/
typedef float (*esp_sr_iface_op_get_det_threshold_t)(model_iface_data_t *model, det_mode_t det_mode, int word_index);
typedef float (*esp_wn_iface_op_get_det_threshold_t)(model_iface_data_t *model, int word_index);
/**
* @brief Feed samples of an audio stream to the speech recognition model and detect if there is a keyword found.
* @brief Feed samples of an audio stream to the keyword detection model and detect if there is a keyword found.
*
* @Warning The index of wake word start with 1, 0 means no wake words is detected.
*
@ -107,28 +96,27 @@ typedef float (*esp_sr_iface_op_get_det_threshold_t)(model_iface_data_t *model,
* get_samp_chunksize function.
* @return The index of wake words, return 0 if no wake word is detected, else the index of the wake words.
*/
typedef int (*esp_sr_iface_op_detect_t)(model_iface_data_t *model, int16_t *samples);
typedef int (*esp_wn_iface_op_detect_t)(model_iface_data_t *model, int16_t *samples);
/**
* @brief Destroy a speech recognition model
*
* @param model Model object to destroy
*/
typedef void (*esp_sr_iface_op_destroy_t)(model_iface_data_t *model);
typedef void (*esp_wn_iface_op_destroy_t)(model_iface_data_t *model);
/**
* This structure contains the functions used to do operations on a speech recognition model.
* This structure contains the functions used to do operations on a wake word detection model.
*/
typedef struct {
esp_sr_iface_op_create_t create;
esp_sr_iface_op_get_samp_chunksize_t get_samp_chunksize;
esp_sr_iface_op_get_samp_rate_t get_samp_rate;
esp_sr_iface_op_get_word_num_t get_word_num;
esp_sr_iface_op_get_word_name_t get_word_name;
esp_sr_iface_op_get_word_list_t get_word_list;
esp_sr_iface_op_set_det_threshold_t set_det_threshold;
esp_sr_iface_op_get_det_threshold_t get_det_threshold_by_mode;
esp_sr_iface_op_detect_t detect;
esp_sr_iface_op_destroy_t destroy;
} esp_sr_iface_t;
esp_wn_iface_op_create_t create;
esp_wn_iface_op_get_samp_chunksize_t get_samp_chunksize;
esp_wn_iface_op_get_samp_rate_t get_samp_rate;
esp_wn_iface_op_get_word_num_t get_word_num;
esp_wn_iface_op_get_word_name_t get_word_name;
esp_wn_iface_op_set_det_threshold_t set_det_threshold;
esp_wn_iface_op_get_det_threshold_t get_det_threshold;
esp_wn_iface_op_detect_t detect;
esp_wn_iface_op_destroy_t destroy;
} esp_wn_iface_t;

View File

@ -1,19 +1,29 @@
#pragma once
#include "esp_sr_iface.h"
#include "esp_wn_iface.h"
//Contains declarations of all available speech recognion models. Pair this up with the right coefficients and you have a model that can recognize
//a specific phrase or word.
extern const esp_sr_iface_t esp_sr_wakenet2_float;
extern const esp_sr_iface_t sr_model_wakenet1_float;
extern const esp_sr_iface_t sr_model_wakenet1_quantized;
extern const esp_sr_iface_t esp_sr_wakenet2_quantized;
extern const esp_sr_iface_t esp_sr_wakenet3_quantized;
extern const esp_sr_iface_t esp_sr_wakenet4_quantized;
extern const esp_wn_iface_t esp_sr_wakenet5_quantized;
/*
Configure network to use based on what's selected in menuconfig.
*/
#define WAKENET_MODEL esp_sr_wakenet5_quantized
/*
Configure wake word to use based on what's selected in menuconfig.
*/
#include "hilexin_wn5.h"
#define WAKENET_COEFF get_coeff_hilexin_wn5
/* example
static const sr_model_iface_t *model = &sr_model_wakenet3_quantized;
static const sr_model_iface_t *model = &WAKENET_MODEL;
//Initialize wakeNet model data
static model_iface_data_t *model_data=model->create(DET_MODE_90);

View File

@ -0,0 +1,8 @@
//Generated by mkmodel
#pragma once
#include <string.h>
#include "dl_lib_coefgetter_if.h"
#include "dl_lib_matrix.h"
#include "dl_lib_matrixq.h"
extern const model_coeff_getter_t get_coeff_hilexin_wn5;

Binary file not shown.

View File

@ -1,10 +0,0 @@
set(COMPONENT_SRCS a.c)
set(COMPONENT_ADD_INCLUDEDIRS include)
register_component()
target_link_libraries(${COMPONENT_TARGET} "-L ${CMAKE_CURRENT_SOURCE_DIR}")
target_link_libraries(${COMPONENT_TARGET}
esp_wakenet
nn_model
)

View File

@ -1,12 +0,0 @@
COMPONENT_ADD_INCLUDEDIRS := . \
./include
COMPONENT_SRCDIRS := . \
./include
LIBS := esp_wakenet nn_model
COMPONENT_ADD_LDFLAGS := -L$(COMPONENT_PATH)/ $(addprefix -l,$(LIBS))
ALL_LIB_FILES += $(patsubst %,$(COMPONENT_PATH)/lib%.a,$(LIBS))

View File

@ -15,8 +15,9 @@ set(COMPONENT_REQUIRES
nvs_flash
esp_http_server
fb_gfx
recorder_engine
esp-sr
spiffs
)
register_component()

View File

@ -37,7 +37,7 @@ static const char *TAG = "app_httpserver";
#define FACE_COLOR_CYAN (FACE_COLOR_BLUE | FACE_COLOR_GREEN)
#define FACE_COLOR_PURPLE (FACE_COLOR_BLUE | FACE_COLOR_RED)
#define ENROLL_CONFIRM_TIMES 3
#define ENROLL_CONFIRM_TIMES 1
#define FACE_ID_SAVE_NUMBER 10
#define PART_BOUNDARY "123456789000000000000987654321"

View File

@ -69,3 +69,4 @@ void recsrcTask(void *arg)
vTaskDelete(NULL);
}

View File

@ -12,14 +12,15 @@
#include "esp_partition.h"
#include "app_speech_srcif.h"
#include "sdkconfig.h"
#include "esp_sr_iface.h"
#include "esp_sr_models.h"
#include "esp_wn_iface.h"
#include "esp_wn_models.h"
#include "dl_lib_coefgetter_if.h"
#include "app_main.h"
#define SR_MODEL esp_sr_wakenet3_quantized
static const esp_wn_iface_t *wakenet = &WAKENET_MODEL;
static const model_coeff_getter_t *model_coeff_getter = &WAKENET_COEFF;
static src_cfg_t srcif;
static const esp_sr_iface_t *model = &SR_MODEL;
static model_iface_data_t *model_data;
QueueHandle_t sndQueue;
@ -27,20 +28,20 @@ QueueHandle_t sndQueue;
static void event_wakeup_detected(int r)
{
assert(g_state == WAIT_FOR_WAKEUP);
printf("%s DETECTED.\n", model->get_word_name(model_data, r));
printf("%s DETECTED.\n", wakenet->get_word_name(model_data, r));
g_state = WAIT_FOR_CONNECT;
}
void nnTask(void *arg)
{
int audio_chunksize = model->get_samp_chunksize(model_data);
int audio_chunksize = wakenet->get_samp_chunksize(model_data);
int16_t *buffer=malloc(audio_chunksize*sizeof(int16_t));
assert(buffer);
while(1) {
xQueueReceive(sndQueue, buffer, portMAX_DELAY);
int r=model->detect(model_data, buffer);
int r=wakenet->detect(model_data, buffer);
if (r)
{
event_wakeup_detected(r);
@ -54,15 +55,14 @@ void nnTask(void *arg)
void app_speech_wakeup_init()
{
//Initialize NN model
model_data=model->create(DET_MODE_95);
model_data=wakenet->create(model_coeff_getter,DET_MODE_95);
wake_word_info_t* word_list = malloc(sizeof(wake_word_info_t));
esp_err_t ret = model->get_word_list(model_data, word_list);
if (ret == ESP_OK) printf("wake word number = %d, word1 name = %s\n",
word_list->wake_word_num, word_list->wake_word_list[0]);
free(word_list);
int wake_word_num = wakenet->get_word_num(model_data);
char *wake_word_list = wakenet->get_word_name(model_data, 1);
if (wake_word_num) printf("wake word number = %d, word1 name = %s\n",
wake_word_num, wake_word_list);
int audio_chunksize=model->get_samp_chunksize(model_data);
int audio_chunksize=wakenet->get_samp_chunksize(model_data);
//Initialize sound source
sndQueue=xQueueCreate(2, (audio_chunksize*sizeof(int16_t)));
@ -73,3 +73,4 @@ void app_speech_wakeup_init()
xTaskCreatePinnedToCore(&nnTask, "nn", 2*1024, NULL, 5, NULL, 1);
}

View File

@ -3,7 +3,7 @@
#include "app_wifi.h"
#include "app_speech_srcif.h"
#define VERSION "0.9.0"
#define VERSION "1.0.0"
#define GPIO_LED_RED 21
#define GPIO_LED_WHITE 22