// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "time.h" #include "sys/time.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "rom/lldesc.h" #include "soc/soc.h" #include "soc/gpio_sig_map.h" #include "soc/i2s_reg.h" #include "soc/i2s_struct.h" #include "soc/io_mux_reg.h" #include "driver/gpio.h" #include "driver/rtc_io.h" #include "driver/periph_ctrl.h" #include "esp_intr_alloc.h" #include "sensor.h" #include "sccb.h" #include "camera.h" #include "camera_common.h" #include "xclk.h" #if CONFIG_OV2640_SUPPORT #include "ov2640.h" #endif #if CONFIG_OV7725_SUPPORT #include "ov7725.h" #endif #define ENABLE_TEST_PATTERN CONFIG_ENABLE_TEST_PATTERN #define REG_PID 0x0A #define REG_VER 0x0B #define REG_MIDH 0x1C #define REG_MIDL 0x1D #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #define TAG "" #else #include "esp_log.h" static const char* TAG = "camera"; #endif typedef void (*dma_filter_t)(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); typedef struct camera_fb_s { uint8_t * buf; size_t len; size_t width; size_t height; size_t size; uint8_t ref; struct camera_fb_s * next; } camera_fb_int_t; typedef struct fb_s { uint8_t * buf; size_t len; struct fb_s * next; } fb_item_t; typedef struct { camera_config_t config; sensor_t sensor; camera_fb_int_t *fb; size_t fb_size; size_t data_size; size_t width; size_t height; size_t in_bytes_per_pixel; size_t fb_bytes_per_pixel; size_t dma_received_count; size_t dma_filtered_count; size_t dma_per_line; size_t dma_buf_width; size_t dma_sample_count; lldesc_t *dma_desc; dma_elem_t **dma_buf; size_t dma_desc_count; size_t dma_desc_cur; i2s_sampling_mode_t sampling_mode; dma_filter_t dma_filter; intr_handle_t i2s_intr_handle; QueueHandle_t data_ready; QueueHandle_t fb_in; QueueHandle_t fb_out; SemaphoreHandle_t frame_ready; TaskHandle_t dma_filter_task; } camera_state_t; camera_state_t* s_state = NULL; static bool first_vsync = true; const int resolution[][2] = { { 40, 30 }, /* 40x30 */ { 64, 32 }, /* 64x32 */ { 64, 64 }, /* 64x64 */ { 100, 74 }, /* QQCIF */ { 160, 120 }, /* QQVGA */ { 128, 160 }, /* QQVGA2*/ { 176, 144 }, /* QCIF */ { 240, 160 }, /* HQVGA */ { 320, 240 }, /* QVGA */ { 400, 296 }, /* CIF */ { 640, 480 }, /* VGA */ { 800, 600 }, /* SVGA */ { 1024, 768 }, /* XGA */ { 1280, 1024 }, /* SXGA */ { 1600, 1200 }, /* UXGA */ }; static void i2s_init(); static void i2s_run(); static void IRAM_ATTR vsync_isr(void* arg); static void IRAM_ATTR i2s_isr(void* arg); static esp_err_t dma_desc_init(); static void dma_desc_deinit(); static void dma_filter_task(void *pvParameters); static void dma_filter_grayscale(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_grayscale_highspeed(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_yuyv(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_yuyv_highspeed(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_jpeg(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_rgb565(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void dma_filter_rgb888(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst); static void i2s_stop(bool* need_yield); static bool is_hs_mode() { return s_state->config.xclk_freq_hz > 10000000; } static size_t i2s_bytes_per_sample(i2s_sampling_mode_t mode) { switch(mode) { case SM_0A00_0B00: return 4; case SM_0A0B_0B0C: return 4; case SM_0A0B_0C0D: return 2; default: assert(0 && "invalid sampling mode"); return 0; } } static void IRAM_ATTR vsync_intr_disable() { gpio_set_intr_type(s_state->config.pin_vsync, GPIO_INTR_DISABLE); } static void vsync_intr_enable() { gpio_set_intr_type(s_state->config.pin_vsync, GPIO_INTR_NEGEDGE); } static void skip_frame() { if (s_state == NULL) { return; } while (gpio_get_level(s_state->config.pin_vsync) == 0) { ; } while (gpio_get_level(s_state->config.pin_vsync) != 0) { ; } while (gpio_get_level(s_state->config.pin_vsync) == 0) { ; } } static void camera_fb_deinit() { camera_fb_int_t * _fb1 = s_state->fb, * _fb2 = NULL; while(s_state->fb){ _fb2 = s_state->fb; s_state->fb = _fb2->next; if(_fb2->next == _fb1){ s_state->fb = NULL; } free(_fb2->buf); free(_fb2); } } static esp_err_t camera_fb_init(size_t count) { if(!count){ return ESP_ERR_INVALID_ARG; } camera_fb_deinit(); ESP_LOGI(TAG, "Allocating %u frame buffers (%d KB total)", count, (s_state->fb_size * count) / 1024); camera_fb_int_t * _fb = NULL, * _fb1 = NULL, * _fb2 = NULL; for(size_t i = 0; i < count; i++){ _fb2 = (camera_fb_int_t *)malloc(sizeof(camera_fb_int_t)); if(!_fb2){ goto fail; } memset(_fb2, 0, sizeof(camera_fb_int_t)); _fb2->size = s_state->fb_size; _fb2->buf = (uint8_t*) heap_caps_calloc(_fb2->size, 1, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); if(!_fb2->buf){ _fb2->buf = (uint8_t*) calloc(_fb2->size, 1); } if(!_fb2->buf){ free(_fb2); goto fail; } memset(_fb2->buf, 0, _fb2->size); _fb2->next = _fb; _fb = _fb2; if(!i){ _fb1 = _fb2; } } if(_fb1){ _fb1->next = _fb; } s_state->fb = _fb;//load first buffer return ESP_OK; fail: while(_fb){ _fb2 = _fb; _fb = _fb->next; free(_fb2->buf); free(_fb2); } return ESP_ERR_NO_MEM; } static esp_err_t dma_desc_init() { assert(s_state->width % 4 == 0); size_t line_size = s_state->width * s_state->in_bytes_per_pixel * i2s_bytes_per_sample(s_state->sampling_mode); ESP_LOGD(TAG, "Line width (for DMA): %d bytes", line_size); size_t dma_per_line = 1; size_t buf_size = line_size; while (buf_size >= 4096) { buf_size /= 2; dma_per_line *= 2; } size_t dma_desc_count = dma_per_line * 4; s_state->dma_buf_width = line_size; s_state->dma_per_line = dma_per_line; s_state->dma_desc_count = dma_desc_count; ESP_LOGD(TAG, "DMA buffer size: %d, DMA buffers per line: %d", buf_size, dma_per_line); ESP_LOGD(TAG, "DMA buffer count: %d", dma_desc_count); ESP_LOGD(TAG, "DMA buffer total: %d bytes", buf_size * dma_desc_count); s_state->dma_buf = (dma_elem_t**) malloc(sizeof(dma_elem_t*) * dma_desc_count); if (s_state->dma_buf == NULL) { return ESP_ERR_NO_MEM; } s_state->dma_desc = (lldesc_t*) malloc(sizeof(lldesc_t) * dma_desc_count); if (s_state->dma_desc == NULL) { return ESP_ERR_NO_MEM; } size_t dma_sample_count = 0; for (int i = 0; i < dma_desc_count; ++i) { ESP_LOGD(TAG, "Allocating DMA buffer #%d, size=%d", i, buf_size); dma_elem_t* buf = (dma_elem_t*) malloc(buf_size); if (buf == NULL) { return ESP_ERR_NO_MEM; } s_state->dma_buf[i] = buf; ESP_LOGV(TAG, "dma_buf[%d]=%p", i, buf); lldesc_t* pd = &s_state->dma_desc[i]; pd->length = buf_size; if (s_state->sampling_mode == SM_0A0B_0B0C && (i + 1) % dma_per_line == 0) { pd->length -= 4; } dma_sample_count += pd->length / 4; pd->size = pd->length; pd->owner = 1; pd->sosf = 1; pd->buf = (uint8_t*) buf; pd->offset = 0; pd->empty = 0; pd->eof = 1; pd->qe.stqe_next = &s_state->dma_desc[(i + 1) % dma_desc_count]; } s_state->dma_sample_count = dma_sample_count; return ESP_OK; } static void dma_desc_deinit() { if (s_state->dma_buf) { for (int i = 0; i < s_state->dma_desc_count; ++i) { free(s_state->dma_buf[i]); } } free(s_state->dma_buf); free(s_state->dma_desc); } static inline void IRAM_ATTR i2s_conf_reset() { const uint32_t lc_conf_reset_flags = I2S_IN_RST_M | I2S_AHBM_RST_M | I2S_AHBM_FIFO_RST_M; I2S0.lc_conf.val |= lc_conf_reset_flags; I2S0.lc_conf.val &= ~lc_conf_reset_flags; const uint32_t conf_reset_flags = I2S_RX_RESET_M | I2S_RX_FIFO_RESET_M | I2S_TX_RESET_M | I2S_TX_FIFO_RESET_M; I2S0.conf.val |= conf_reset_flags; I2S0.conf.val &= ~conf_reset_flags; while (I2S0.state.rx_fifo_reset_back) { ; } } static void i2s_init() { camera_config_t* config = &s_state->config; // Configure input GPIOs gpio_num_t pins[] = { config->pin_d7, config->pin_d6, config->pin_d5, config->pin_d4, config->pin_d3, config->pin_d2, config->pin_d1, config->pin_d0, config->pin_vsync, config->pin_href, config->pin_pclk }; gpio_config_t conf = { .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; for (int i = 0; i < sizeof(pins) / sizeof(gpio_num_t); ++i) { if (rtc_gpio_is_valid_gpio(pins[i])) { rtc_gpio_deinit(pins[i]); } conf.pin_bit_mask = 1LL << pins[i]; gpio_config(&conf); } // Route input GPIOs to I2S peripheral using GPIO matrix gpio_matrix_in(config->pin_d0, I2S0I_DATA_IN0_IDX, false); gpio_matrix_in(config->pin_d1, I2S0I_DATA_IN1_IDX, false); gpio_matrix_in(config->pin_d2, I2S0I_DATA_IN2_IDX, false); gpio_matrix_in(config->pin_d3, I2S0I_DATA_IN3_IDX, false); gpio_matrix_in(config->pin_d4, I2S0I_DATA_IN4_IDX, false); gpio_matrix_in(config->pin_d5, I2S0I_DATA_IN5_IDX, false); gpio_matrix_in(config->pin_d6, I2S0I_DATA_IN6_IDX, false); gpio_matrix_in(config->pin_d7, I2S0I_DATA_IN7_IDX, false); gpio_matrix_in(config->pin_vsync, I2S0I_V_SYNC_IDX, false); gpio_matrix_in(0x38, I2S0I_H_SYNC_IDX, false); gpio_matrix_in(config->pin_href, I2S0I_H_ENABLE_IDX, false); gpio_matrix_in(config->pin_pclk, I2S0I_WS_IN_IDX, false); // Enable and configure I2S peripheral periph_module_enable(PERIPH_I2S0_MODULE); // Toggle some reset bits in LC_CONF register // Toggle some reset bits in CONF register i2s_conf_reset(); // Enable slave mode (sampling clock is external) I2S0.conf.rx_slave_mod = 1; // Enable parallel mode I2S0.conf2.lcd_en = 1; // Use HSYNC/VSYNC/HREF to control sampling I2S0.conf2.camera_en = 1; // Configure clock divider I2S0.clkm_conf.clkm_div_a = 1; I2S0.clkm_conf.clkm_div_b = 0; I2S0.clkm_conf.clkm_div_num = 2; // FIFO will sink data to DMA I2S0.fifo_conf.dscr_en = 1; // FIFO configuration I2S0.fifo_conf.rx_fifo_mod = s_state->sampling_mode; I2S0.fifo_conf.rx_fifo_mod_force_en = 1; I2S0.conf_chan.rx_chan_mod = 1; // Clear flags which are used in I2S serial mode I2S0.sample_rate_conf.rx_bits_mod = 0; I2S0.conf.rx_right_first = 0; I2S0.conf.rx_msb_right = 0; I2S0.conf.rx_msb_shift = 0; I2S0.conf.rx_mono = 0; I2S0.conf.rx_short_sync = 0; I2S0.timing.val = 0; I2S0.timing.rx_dsync_sw = 1; // Allocate I2S interrupt, keep it disabled esp_intr_alloc(ETS_I2S0_INTR_SOURCE, ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_LEVEL1 | ESP_INTR_FLAG_IRAM, &i2s_isr, NULL, &s_state->i2s_intr_handle); } static void i2s_run() { for (int i = 0; i < s_state->dma_desc_count; ++i) { lldesc_t* d = &s_state->dma_desc[i]; ESP_LOGV(TAG, "DMA desc %2d: %u %u %u %u %u %u %p %p", i, d->length, d->size, d->offset, d->eof, d->sosf, d->owner, d->buf, d->qe.stqe_next); memset(s_state->dma_buf[i], 0, d->length); } // wait for frame camera_fb_int_t * fb = s_state->fb; while(s_state->config.fb_count > 1){ while(s_state->fb->ref && s_state->fb->next != fb){ s_state->fb = s_state->fb->next; } if(s_state->fb->ref == 0){ break; } vTaskDelay(2); } // wait for vsync ESP_LOGV(TAG, "Waiting for negative edge on VSYNC"); while (gpio_get_level(s_state->config.pin_vsync) != 0) { ; } ESP_LOGV(TAG, "Got VSYNC"); s_state->dma_desc_cur = 0; s_state->dma_received_count = 0; //s_state->dma_filtered_count = 0; esp_intr_disable(s_state->i2s_intr_handle); i2s_conf_reset(); I2S0.rx_eof_num = s_state->dma_sample_count; I2S0.in_link.addr = (uint32_t) &s_state->dma_desc[0]; I2S0.in_link.start = 1; I2S0.int_clr.val = I2S0.int_raw.val; I2S0.int_ena.val = 0; I2S0.int_ena.in_done = 1; esp_intr_enable(s_state->i2s_intr_handle); I2S0.conf.rx_start = 1; if (s_state->config.pixel_format == CAMERA_PF_JPEG) { first_vsync = true; vsync_intr_enable(); } } static void IRAM_ATTR i2s_stop_bus() { esp_intr_disable(s_state->i2s_intr_handle); vsync_intr_disable(); i2s_conf_reset(); I2S0.conf.rx_start = 0; } static void IRAM_ATTR i2s_stop(bool* need_yield) { if(s_state->config.fb_count == 1){ i2s_stop_bus(); } else { s_state->dma_received_count = 0; } size_t val = SIZE_MAX; BaseType_t higher_priority_task_woken; BaseType_t ret = xQueueSendFromISR(s_state->data_ready, &val, &higher_priority_task_woken); if(need_yield && !*need_yield){ *need_yield = (ret == pdTRUE && higher_priority_task_woken == pdTRUE); } } static void IRAM_ATTR signal_dma_buf_received(bool* need_yield) { size_t dma_desc_filled = s_state->dma_desc_cur; s_state->dma_desc_cur = (dma_desc_filled + 1) % s_state->dma_desc_count; s_state->dma_received_count++; BaseType_t higher_priority_task_woken; BaseType_t ret = xQueueSendFromISR(s_state->data_ready, &dma_desc_filled, &higher_priority_task_woken); if (ret != pdTRUE) { ESP_EARLY_LOGW(TAG, "queue send failed (%d), dma_received_count=%d", ret, s_state->dma_received_count); } *need_yield = (ret == pdTRUE && higher_priority_task_woken == pdTRUE); } static void IRAM_ATTR i2s_isr(void* arg) { I2S0.int_clr.val = I2S0.int_raw.val; bool need_yield = false; signal_dma_buf_received(&need_yield); if (s_state->config.pixel_format != CAMERA_PF_JPEG && s_state->dma_received_count == s_state->height * s_state->dma_per_line) { //ets_printf("end_enough\n"); i2s_stop(&need_yield); } if (need_yield) { portYIELD_FROM_ISR(); } } static void IRAM_ATTR vsync_isr(void* arg) { GPIO.status1_w1tc.val = GPIO.status1.val; GPIO.status_w1tc = GPIO.status; bool need_yield = false; //if vsync is low and we have received some data, frame is done if (gpio_get_level(s_state->config.pin_vsync) == 0) { if(s_state->dma_received_count > 0){ signal_dma_buf_received(&need_yield); //ets_printf("end_vsync\n"); if(s_state->dma_filtered_count > 1 || s_state->config.fb_count > 1) { i2s_stop(&need_yield); } first_vsync = false; } if(s_state->config.fb_count > 1 || s_state->dma_filtered_count < 2){ I2S0.conf.rx_start = 0; I2S0.in_link.start = 0; I2S0.int_clr.val = I2S0.int_raw.val; i2s_conf_reset(); s_state->dma_desc_cur = (s_state->dma_desc_cur + 1) % s_state->dma_desc_count; //I2S0.rx_eof_num = s_state->dma_sample_count; I2S0.in_link.addr = (uint32_t) &s_state->dma_desc[s_state->dma_desc_cur]; I2S0.in_link.start = 1; I2S0.conf.rx_start = 1; s_state->dma_received_count = 0; } } if (need_yield) { portYIELD_FROM_ISR(); } } static void IRAM_ATTR camera_fb_done() { camera_fb_int_t * fb = NULL, * fb2 = NULL; BaseType_t taskAwoken = 0; fb = s_state->fb; if(!fb->ref && fb->len){ //add reference fb->ref = 1; //check if the queue is full if(xQueueIsQueueFullFromISR(s_state->fb_out) == pdTRUE){ //pop frame buffer from the queue if(xQueueReceiveFromISR(s_state->fb_out, &fb2, &taskAwoken) == pdTRUE){ //free the popped buffer fb2->ref = 0; fb2->len = 0; //push the new frame to the end of the queue xQueueSendFromISR(s_state->fb_out, &fb, &taskAwoken); } else { //queue is full and we could not pop a frame from it } } else { //push the new frame to the end of the queue xQueueSendFromISR(s_state->fb_out, &fb, &taskAwoken); } } else { //frame was referenced or empty } //return buffers to be filled while(xQueueReceiveFromISR(s_state->fb_in, &fb2, &taskAwoken) == pdTRUE){ fb2->ref = 0; fb2->len = 0; } //advance frame buffer only if the current one has data if(s_state->fb->len){ s_state->fb = s_state->fb->next; } //try to find the next free frame buffer while(s_state->fb->ref && s_state->fb->next != fb){ s_state->fb = s_state->fb->next; } //is the found frame buffer free? if(!s_state->fb->ref){ //buffer found. make sure it's empty s_state->fb->len = 0; *((uint32_t *)s_state->fb->buf) = 0; } else { //stay at the previous buffer s_state->fb = fb; } } static void IRAM_ATTR dma_filter_buffer(size_t buf_idx) { #ifdef DETECT_BAD_FRAME static uint8_t last_byte = 0; #endif size_t buf_len = s_state->width * s_state->fb_bytes_per_pixel / s_state->dma_per_line; if (buf_idx == SIZE_MAX) { if(!s_state->fb->ref){ s_state->fb->len = s_state->dma_filtered_count * buf_len; } if(s_state->fb->len){ if(s_state->config.fb_count == 1){ xSemaphoreGive(s_state->frame_ready); } else { camera_fb_done(); } } s_state->dma_filtered_count = 0; return; } if(s_state->fb->ref){ return; } const dma_elem_t* buf = s_state->dma_buf[buf_idx]; lldesc_t* desc = &s_state->dma_desc[buf_idx]; size_t fb_pos = s_state->dma_filtered_count * buf_len; if(fb_pos > s_state->fb_size - buf_len){ //size_t processed = s_state->dma_received_count * buf_len; //ets_printf("[%s:%u] ovf pos: %u, processed: %u\n", __FUNCTION__, __LINE__, fb_pos, processed); return; } uint8_t* pfb = s_state->fb->buf + fb_pos; (*s_state->dma_filter)(buf, desc, pfb); if(s_state->config.pixel_format == CAMERA_PF_JPEG){ if(!s_state->dma_filtered_count){ //first buffer uint32_t sig = *((uint32_t *)s_state->fb->buf) & 0xFFFFFF; if(sig != 0xffd8ff){ //ets_printf("*"); //maybe skip frame? return; } s_state->fb->width = s_state->width; s_state->fb->height = s_state->height; } #ifdef DETECT_BAD_FRAME if(s_state->dma_filtered_count == 1){//second buffer //check if last byte from previous buffer and first of this one match if(*pfb == last_byte){ ets_printf("BAD FRAME\n"); I2S0.conf.rx_start = 0; I2S0.in_link.start = 0; I2S0.int_clr.val = I2S0.int_raw.val; i2s_conf_reset(); I2S0.in_link.addr = (uint32_t) &s_state->dma_desc[s_state->dma_desc_cur]; I2S0.in_link.start = 1; I2S0.conf.rx_start = 1; s_state->dma_received_count = 0; s_state->dma_filtered_count = 0; return; } } else if(s_state->dma_filtered_count == 0){ //get the last byte of the buffer last_byte = *(pfb + (buf_len - 1)); } #endif } s_state->dma_filtered_count++; //ets_printf("dma_flt: flt_count=%d\n", s_state->dma_filtered_count); //ets_printf("[0x%08X] pos: %u\n", (uint32_t)s_state->fb->buf, fb_pos); } static void IRAM_ATTR dma_filter_task(void *pvParameters) { s_state->dma_filtered_count = 0; while (true) { size_t buf_idx; if(xQueueReceive(s_state->data_ready, &buf_idx, portMAX_DELAY) == pdTRUE){ dma_filter_buffer(buf_idx); } } } static void IRAM_ATTR dma_filter_jpeg(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 4; // manually unrolling 4 iterations of the loop here for (size_t i = 0; i < end; ++i) { dst[0] = src[0].sample1; dst[1] = src[1].sample1; dst[2] = src[2].sample1; dst[3] = src[3].sample1; src += 4; dst += 4; } // the final sample of a line in SM_0A0B_0B0C sampling mode needs special handling if ((dma_desc->length & 0x7) != 0) { dst[0] = src[0].sample1; dst[1] = src[1].sample1; dst[2] = src[2].sample1; dst[3] = src[2].sample2; } } static void IRAM_ATTR dma_filter_grayscale(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 4; for (size_t i = 0; i < end; ++i) { // manually unrolling 4 iterations of the loop here dst[0] = src[0].sample1; dst[1] = src[1].sample1; dst[2] = src[2].sample1; dst[3] = src[3].sample1; src += 4; dst += 4; } } static void IRAM_ATTR dma_filter_grayscale_highspeed(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 8; for (size_t i = 0; i < end; ++i) { // manually unrolling 4 iterations of the loop here dst[0] = src[0].sample1; dst[1] = src[2].sample1; dst[2] = src[4].sample1; dst[3] = src[6].sample1; src += 8; dst += 4; } // the final sample of a line in SM_0A0B_0B0C sampling mode needs special handling if ((dma_desc->length & 0x7) != 0) { dst[0] = src[0].sample1; dst[1] = src[2].sample1; } } static void IRAM_ATTR dma_filter_yuyv(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 4; for (size_t i = 0; i < end; ++i) { dst[0] = src[0].sample1;//y0 dst[1] = src[0].sample2;//u dst[2] = src[1].sample1;//y1 dst[3] = src[1].sample2;//v dst[4] = src[2].sample1;//y0 dst[5] = src[2].sample2;//u dst[6] = src[3].sample1;//y1 dst[7] = src[3].sample2;//v src += 4; dst += 8; } } static void IRAM_ATTR dma_filter_yuyv_highspeed(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 8; for (size_t i = 0; i < end; ++i) { dst[0] = src[0].sample1;//y0 dst[1] = src[1].sample1;//u dst[2] = src[2].sample1;//y1 dst[3] = src[3].sample1;//v dst[4] = src[4].sample1;//y0 dst[5] = src[5].sample1;//u dst[6] = src[6].sample1;//y1 dst[7] = src[7].sample1;//v src += 8; dst += 8; } if ((dma_desc->length & 0x7) != 0) { dst[0] = src[0].sample1;//y0 dst[1] = src[1].sample1;//u dst[2] = src[2].sample1;//y1 dst[3] = src[2].sample2;//v } } static void IRAM_ATTR dma_filter_rgb565(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { size_t end = dma_desc->length / sizeof(dma_elem_t) / 8; for (size_t i = 0; i < end; ++i) { dst[0] = src[1].sample1; dst[1] = src[0].sample1; dst[2] = src[3].sample1; dst[3] = src[2].sample1; dst[4] = src[5].sample1; dst[5] = src[4].sample1; dst[6] = src[7].sample1; dst[7] = src[6].sample1; src += 8; dst += 8; } if ((dma_desc->length & 0x7) != 0) { dst[0] = src[1].sample1; dst[1] = src[0].sample1; dst[2] = src[2].sample2; dst[3] = src[2].sample1; } } static inline void rgb565_to_888(uint8_t in1, uint8_t in2, uint8_t* dst) { dst[0] = (in2 & 0b00011111) << 3; // blue dst[1] = ((in1 & 0b111) << 5) | ((in2 & 0b11100000) >> 3); // green dst[2] = in1 & 0b11111000; // red } static void IRAM_ATTR dma_filter_rgb888(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst) { assert(s_state->sampling_mode == SM_0A0B_0B0C || s_state->sampling_mode == SM_0A00_0B00); const int unroll = 2; // manually unrolling 2 iterations of the loop const int samples_per_pixel = 2; const int bytes_per_pixel = 3; size_t end = dma_desc->length / sizeof(dma_elem_t) / unroll / samples_per_pixel; for (size_t i = 0; i < end; ++i) { rgb565_to_888(src[0].sample1, src[1].sample1, &dst[0]); rgb565_to_888(src[2].sample1, src[3].sample1, &dst[3]); dst += bytes_per_pixel * unroll; src += samples_per_pixel * unroll; } if ((dma_desc->length & 0x7) != 0) { rgb565_to_888(src[0].sample1, src[1].sample1, &dst[0]); rgb565_to_888(src[2].sample1, src[2].sample2, &dst[3]); } } /* * Public Methods * */ esp_err_t camera_probe(const camera_config_t* config, camera_model_t* out_camera_model) { if (s_state != NULL) { return ESP_ERR_INVALID_STATE; } s_state = (camera_state_t*) calloc(sizeof(*s_state), 1); if (!s_state) { return ESP_ERR_NO_MEM; } ESP_LOGD(TAG, "Enabling XCLK output"); camera_enable_out_clock(config); ESP_LOGD(TAG, "Initializing SSCB"); SCCB_Init(config->pin_sscb_sda, config->pin_sscb_scl); if(config->pin_reset >= 0){ ESP_LOGD(TAG, "Resetting camera"); gpio_config_t conf = { 0 }; conf.pin_bit_mask = 1LL << config->pin_reset; conf.mode = GPIO_MODE_OUTPUT; gpio_config(&conf); gpio_set_level(config->pin_reset, 0); vTaskDelay(10 / portTICK_PERIOD_MS); gpio_set_level(config->pin_reset, 1); vTaskDelay(10 / portTICK_PERIOD_MS); } else { //reset OV2640 SCCB_Write(0x30, 0xFF, 0x01);//bank sensor SCCB_Write(0x30, 0x12, 0x80);//reset vTaskDelay(10 / portTICK_PERIOD_MS); } ESP_LOGD(TAG, "Searching for camera address"); vTaskDelay(10 / portTICK_PERIOD_MS); uint8_t slv_addr = SCCB_Probe(); if (slv_addr == 0) { *out_camera_model = CAMERA_NONE; return ESP_ERR_CAMERA_NOT_DETECTED; } s_state->sensor.slv_addr = slv_addr; //s_state->sensor.slv_addr = 0x30; ESP_LOGD(TAG, "Detected camera at address=0x%02x", s_state->sensor.slv_addr); sensor_id_t* id = &s_state->sensor.id; id->PID = SCCB_Read(s_state->sensor.slv_addr, REG_PID); id->VER = SCCB_Read(s_state->sensor.slv_addr, REG_VER); id->MIDL = SCCB_Read(s_state->sensor.slv_addr, REG_MIDL); id->MIDH = SCCB_Read(s_state->sensor.slv_addr, REG_MIDH); vTaskDelay(10 / portTICK_PERIOD_MS); ESP_LOGD(TAG, "Camera PID=0x%02x VER=0x%02x MIDL=0x%02x MIDH=0x%02x", id->PID, id->VER, id->MIDH, id->MIDL); switch (id->PID) { #if CONFIG_OV2640_SUPPORT case OV2640_PID: *out_camera_model = CAMERA_OV2640; ov2640_init(&s_state->sensor); break; #endif #if CONFIG_OV7725_SUPPORT case OV7725_PID: *out_camera_model = CAMERA_OV7725; ov7725_init(&s_state->sensor); break; #endif default: id->PID = 0; *out_camera_model = CAMERA_UNKNOWN; ESP_LOGE(TAG, "Detected camera not supported."); return ESP_ERR_CAMERA_NOT_SUPPORTED; } ESP_LOGD(TAG, "Doing SW reset of sensor"); s_state->sensor.reset(&s_state->sensor); return ESP_OK; } esp_err_t camera_init(const camera_config_t* config) { if (!s_state) { return ESP_ERR_INVALID_STATE; } if (s_state->sensor.id.PID == 0) { return ESP_ERR_CAMERA_NOT_SUPPORTED; } memcpy(&s_state->config, config, sizeof(*config)); esp_err_t err = ESP_OK; framesize_t frame_size = (framesize_t) config->frame_size; pixformat_t pix_format = (pixformat_t) config->pixel_format; s_state->width = resolution[frame_size][0]; s_state->height = resolution[frame_size][1]; if (pix_format == PIXFORMAT_GRAYSCALE) { s_state->fb_size = s_state->width * s_state->height; if (is_hs_mode()) { s_state->sampling_mode = SM_0A00_0B00; s_state->dma_filter = &dma_filter_grayscale_highspeed; } else { s_state->sampling_mode = SM_0A0B_0C0D; s_state->dma_filter = &dma_filter_grayscale; } s_state->in_bytes_per_pixel = 2; // camera sends YUYV s_state->fb_bytes_per_pixel = 1; // frame buffer stores Y8 } else if (pix_format == PIXFORMAT_YUV422) { s_state->fb_size = s_state->width * s_state->height * 2; if (is_hs_mode()) { s_state->sampling_mode = SM_0A00_0B00; s_state->dma_filter = &dma_filter_yuyv_highspeed; } else { s_state->sampling_mode = SM_0A0B_0C0D; s_state->dma_filter = &dma_filter_yuyv; } s_state->in_bytes_per_pixel = 2; // camera sends YUYV s_state->fb_bytes_per_pixel = 2; // frame buffer stores Y8 } else if (pix_format == PIXFORMAT_RGB565) { s_state->fb_size = s_state->width * s_state->height * 2; s_state->sampling_mode = SM_0A00_0B00; s_state->in_bytes_per_pixel = 2; // camera sends RGB565 (2 bytes) s_state->fb_bytes_per_pixel = 2; // frame buffer stores RGB888 s_state->dma_filter = &dma_filter_rgb565; } else if (pix_format == PIXFORMAT_RGB888) { s_state->fb_size = s_state->width * s_state->height * 3; s_state->sampling_mode = SM_0A00_0B00; s_state->in_bytes_per_pixel = 2; // camera sends RGB565 (2 bytes) s_state->fb_bytes_per_pixel = 3; // frame buffer stores RGB888 s_state->dma_filter = &dma_filter_rgb888; } else if (pix_format == PIXFORMAT_JPEG) { if (s_state->sensor.id.PID != OV2640_PID) { ESP_LOGE(TAG, "JPEG format is only supported for ov2640"); err = ESP_ERR_NOT_SUPPORTED; goto fail; } int qp = config->jpeg_quality; int compression_ratio_bound = 1; if (qp > 10) { compression_ratio_bound = 16; } else if (qp > 5) { compression_ratio_bound = 10; } else { compression_ratio_bound = 4; } (*s_state->sensor.set_quality)(&s_state->sensor, qp); s_state->in_bytes_per_pixel = 2; s_state->fb_bytes_per_pixel = 2; s_state->fb_size = (s_state->width * s_state->height * s_state->fb_bytes_per_pixel) / compression_ratio_bound; s_state->dma_filter = &dma_filter_jpeg; s_state->sampling_mode = SM_0A00_0B00; } else { ESP_LOGE(TAG, "Requested format is not supported"); err = ESP_ERR_NOT_SUPPORTED; goto fail; } ESP_LOGD(TAG, "in_bpp: %d, fb_bpp: %d, fb_size: %d, mode: %d, width: %d height: %d", s_state->in_bytes_per_pixel, s_state->fb_bytes_per_pixel, s_state->fb_size, s_state->sampling_mode, s_state->width, s_state->height); ESP_LOGD(TAG, "Initializing I2S"); i2s_init(); ESP_LOGD(TAG, "Initializing DMA"); err = dma_desc_init(); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to initialize I2S and DMA"); goto fail; } //s_state->fb_size = 75 * 1024; err = camera_fb_init(s_state->config.fb_count); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to allocate frame buffer"); goto fail; } s_state->data_ready = xQueueCreate(16, sizeof(size_t)); if (s_state->data_ready == NULL) { ESP_LOGE(TAG, "Failed to dma queue"); err = ESP_ERR_NO_MEM; goto fail; } if(s_state->config.fb_count == 1){ s_state->frame_ready = xSemaphoreCreateBinary(); if (s_state->frame_ready == NULL) { ESP_LOGE(TAG, "Failed to create semaphore"); err = ESP_ERR_NO_MEM; goto fail; } } else { //ToDo: IN and OUT queue s_state->fb_in = xQueueCreate(s_state->config.fb_count, sizeof(camera_fb_t *)); s_state->fb_out = xQueueCreate(1, sizeof(camera_fb_t *)); if (s_state->fb_in == NULL || s_state->fb_out == NULL) { ESP_LOGE(TAG, "Failed to fb queues"); err = ESP_ERR_NO_MEM; goto fail; } } if (!xTaskCreatePinnedToCore(&dma_filter_task, "dma_filter", 4096, NULL, 10, &s_state->dma_filter_task, 1)) { ESP_LOGE(TAG, "Failed to create DMA filter task"); err = ESP_ERR_NO_MEM; goto fail; } ESP_LOGD(TAG, "Initializing GPIO interrupts"); vsync_intr_disable(); gpio_install_isr_service(ESP_INTR_FLAG_LEVEL1 | ESP_INTR_FLAG_IRAM); err = gpio_isr_handler_add(s_state->config.pin_vsync, &vsync_isr, NULL); if (err != ESP_OK) { ESP_LOGE(TAG, "vsync_isr_handler_add failed (%x)", err); goto fail; } ESP_LOGD(TAG, "Setting frame size to %dx%d", s_state->width, s_state->height); if (s_state->sensor.set_framesize(&s_state->sensor, frame_size) != 0) { ESP_LOGE(TAG, "Failed to set frame size"); err = ESP_ERR_CAMERA_FAILED_TO_SET_FRAME_SIZE; goto fail; } s_state->sensor.set_pixformat(&s_state->sensor, pix_format); #if ENABLE_TEST_PATTERN /* Test pattern may get handy if you are unable to get the live image right. Once test pattern is enable, sensor will output vertical shaded bars instead of live image. */ s_state->sensor.set_colorbar(&s_state->sensor, 1); ESP_LOGD(TAG, "Test pattern enabled"); #endif // skip at least one frame after changing camera settings ESP_LOGD(TAG, "Skipping one frame..."); skip_frame(); //for some reason the first set of the quality does not work. if (pix_format == PIXFORMAT_JPEG) { (*s_state->sensor.set_quality)(&s_state->sensor, config->jpeg_quality); } ESP_LOGD(TAG, "Init done"); return ESP_OK; fail: camera_deinit(); return err; } esp_err_t camera_deinit() { if (s_state == NULL) { return ESP_ERR_INVALID_STATE; } if (s_state->dma_filter_task) { vTaskDelete(s_state->dma_filter_task); } if (s_state->data_ready) { vQueueDelete(s_state->data_ready); } if (s_state->fb_in) { vQueueDelete(s_state->fb_in); } if (s_state->fb_out) { vQueueDelete(s_state->fb_out); } if (s_state->frame_ready) { vSemaphoreDelete(s_state->frame_ready); } gpio_isr_handler_remove(s_state->config.pin_vsync); if (s_state->i2s_intr_handle) { esp_intr_disable(s_state->i2s_intr_handle); esp_intr_free(s_state->i2s_intr_handle); } dma_desc_deinit(); camera_fb_deinit(); free(s_state); s_state = NULL; camera_disable_out_clock(); periph_module_disable(PERIPH_I2S0_MODULE); return ESP_OK; } camera_fb_t* camera_get_fb() { if (s_state == NULL) { return NULL; } if(!I2S0.conf.rx_start){ if(s_state->config.fb_count > 1){ ESP_LOGD(TAG, "i2s_run"); } i2s_run(); } if(s_state->config.fb_count == 1){ xSemaphoreTake(s_state->frame_ready, portMAX_DELAY); } if(s_state->config.fb_count == 1){ return (camera_fb_t*)s_state->fb; } camera_fb_int_t * fb = NULL; if(s_state->fb_out) { xQueueReceive(s_state->fb_out, &fb, portMAX_DELAY); } return (camera_fb_t*)fb; } void camera_return_fb(camera_fb_t * fb) { if(fb == NULL || s_state == NULL || s_state->config.fb_count == 1 || s_state->fb_in == NULL){ return; } xQueueSend(s_state->fb_in, &fb, portMAX_DELAY); } int camera_get_width() { if (s_state == NULL) { return 0; } return s_state->width; } int camera_get_height() { if (s_state == NULL) { return 0; } return s_state->height; } sensor_t * camera_sensor_get() { if (s_state == NULL) { return NULL; } return &s_state->sensor; }