#include #include #include #include #include #include #include #include "dl_lib.h" #include "image_util.h" #include "freertos/FreeRTOS.h" void image_resize_linear (uint8_t *dst_image, uint8_t *src_image, int dst_w, int dst_h, int dst_c, int src_w, int src_h) {/*{{{*/ float scale_x = (float)src_w / dst_w; float scale_y = (float)src_h / dst_h; int dst_stride = dst_c * dst_w; int src_stride = dst_c * src_w; for (int y = 0; y < dst_h; y++) { float fy[2]; fy[0] = (float)((y + 0.5) * scale_y - 0.5); // y int src_y = (int)fy[0]; // y1 fy[0] -= src_y; // y - y1 fy[1] = 1 - fy[0]; // y2 - y src_y = DL_IMAGE_MAX(0, src_y); src_y = DL_IMAGE_MIN(src_y, src_h - 2); for (int x = 0; x < dst_w; x++) { float fx[2]; fx[0] = (float)((x + 0.5) * scale_x - 0.5); // x int src_x = (int)fx[0]; // x1 fx[0] -= src_x; // x - x1 if (src_x < 0) { fx[0] = 0; src_x = 0; } if (src_x > src_w - 2) { fx[0] = 0; src_x = src_w - 2; } fx[1] = 1 - fx[0]; // x2 - x for (int c = 0; c < dst_c; c++) { dst_image[y * dst_stride + x * dst_c + c] = round(src_image[src_y * src_stride + src_x * dst_c + c] * fx[1] * fy[1] + src_image[src_y * src_stride + (src_x + 1) * dst_c + c] * fx[0] * fy[1] + src_image[(src_y + 1) * src_stride + src_x * dst_c + c] * fx[1] * fy[0] + src_image[(src_y + 1) * src_stride + (src_x + 1) * dst_c + c] * fx[0] * fy[0]); } } } }/*}}}*/ // TODO: Crop and align the face according to the output size ,angle,ratio,and center. Using the image_resize_linear inside. // @crop_image: here should be a 56x56x3 // @src_image: input original image. // @rotate_angle: radius that stands for the rotation. Reverse clock is the positive direction. // @ratio: the ratio input/output eye distance. // @center: x,y coordinates that is the rotation center in the input image as well as the cropped image center. void image_cropper(uint8_t *rot_data, uint8_t *src_data, int rot_w, int rot_h, int rot_c, int src_w, int src_h, float rotate_angle, float ratio, float* center) { float rot_w_start = 0.5f -(float)rot_w/2; float rot_h_start = 0.5f -(float)rot_h/2; //rotate_angle must be radius float si = sin(rotate_angle); float co = cos(rotate_angle); int rot_stride = rot_w * rot_c; int src_stride = rot_c * src_w; for (int y = 0; y < rot_h; y++) { for (int x = 0; x < rot_w; x++) { float xs,ys,xr,yr; xs = ratio * (rot_w_start + x); ys = ratio * (rot_h_start + y); xr = xs*co + ys*si; yr = -xs*si + ys*co; float fy[2]; fy[0] = center[1] + yr; // y int src_y = (int)fy[0]; // y1 fy[0] -= src_y; // y - y1 fy[1] = 1 - fy[0]; // y2 - y src_y = DL_IMAGE_MAX(0, src_y); src_y = DL_IMAGE_MIN(src_y, src_h - 2); float fx[2]; fx[0] = center[0] + xr; // x int src_x = (int)fx[0]; // x1 fx[0] -= src_x; // x - x1 if (src_x < 0) { fx[0] = 0; src_x = 0; } if (src_x > src_w - 2) { fx[0] = 0; src_x = src_w - 2; } fx[1] = 1 - fx[0]; // x2 - x for (int c = 0; c < rot_c; c++) { rot_data[y * rot_stride + x * rot_c + c] = round(src_data[src_y * src_stride + src_x * rot_c + c] * fx[1] * fy[1] + src_data[src_y * src_stride + (src_x + 1) * rot_c + c] * fx[0] * fy[1] + src_data[(src_y + 1) * src_stride + src_x * rot_c + c] * fx[1] * fy[0] + src_data[(src_y + 1) * src_stride + (src_x + 1) * rot_c + c] * fx[0] * fy[0]); } } } } void image_sort_insert_by_score (image_list_t *image_sorted_list, const image_list_t *insert_list) {/*{{{*/ if (insert_list == NULL || insert_list->head == NULL) return; image_box_t *box = insert_list->head; if (NULL == image_sorted_list->head) { image_sorted_list->head = insert_list->head; box = insert_list->head->next; image_sorted_list->head->next = NULL; } image_box_t *head = image_sorted_list->head; while (box) { // insert in head if (box->score > head->score) { image_box_t *tmp = box; box = box->next; tmp->next = head; head = tmp; } else { image_box_t *curr = head->next; image_box_t *prev = head; while (curr) { if (box->score > curr->score) { image_box_t *tmp = box; box = box->next; tmp->next = curr; prev->next = tmp; break; } prev = curr; curr = curr->next; } // insert in tail if (NULL == curr) { image_box_t *tmp = box; box = box->next; tmp->next = NULL; prev->next = tmp; } } } image_sorted_list->head = head; image_sorted_list->len += insert_list->len; }/*}}}*/ image_list_t *image_get_valid_boxes (fptp_t *score, fptp_t *offset, int width, int height, fptp_t score_threshold, fptp_t scale) {/*{{{*/ typedef struct { short valid_x; short valid_y; int valid_idx; } valid_index_t; valid_index_t *valid_indexes = (valid_index_t *)calloc(width * height, sizeof(valid_index_t)); int valid_count = 0; int index = 0; for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) { if (score[2 * index + 1] > score_threshold) { valid_indexes[valid_count].valid_x = x; valid_indexes[valid_count].valid_y = y; valid_indexes[valid_count].valid_idx = index; valid_count++; } index++; } if (0 == valid_count) { free(valid_indexes); return NULL; } image_box_t *valid_box = (image_box_t *)calloc(valid_count, sizeof(image_box_t)); image_list_t *valid_list = (image_list_t *)calloc(1, sizeof(image_list_t)); valid_list->head = valid_box; valid_list->origin_head = valid_box; valid_list->len = valid_count; for (int i = 0; i < valid_count; i++) { fptp_t x1 = valid_indexes[i].valid_x * scale * 2.0; fptp_t y1 = valid_indexes[i].valid_y * scale * 2.0; int valid_i = valid_indexes[i].valid_idx; valid_box[i].score = score[2 * valid_i + 1]; valid_box[i].box.box_p[0] = x1; valid_box[i].box.box_p[1] = y1; valid_box[i].box.box_p[2] = x1 + MIN_FACE * scale; valid_box[i].box.box_p[3] = y1 + MIN_FACE * scale; valid_box[i].offset.box_p[0] = offset[valid_i * 4 + 0]; valid_box[i].offset.box_p[1] = offset[valid_i * 4 + 1]; valid_box[i].offset.box_p[2] = offset[valid_i * 4 + 2]; valid_box[i].offset.box_p[3] = offset[valid_i * 4 + 3]; valid_box[i].next = &(valid_box[i + 1]); } valid_box[valid_count - 1].next = NULL; free(valid_indexes); return valid_list; }/*}}}*/ void image_nms_process (image_list_t *image_list, fptp_t nms_threshold, int same_area) {/*{{{*/ /**** Init ****/ int num_supressed = 0; image_box_t *head = image_list->head; /**** Compute Box Area ****/ fptp_t kept_box_area = 0; fptp_t other_box_area = 0; if (same_area) { image_get_area(&(head->box), &kept_box_area); other_box_area = kept_box_area; } /**** Compare IOU ****/ image_box_t *kept_box = head; while (kept_box) { image_box_t *other_box = kept_box->next; image_box_t *prev = kept_box; while (other_box) { // kept_box is contained in other_box if (((kept_box->box.box_p[0] > other_box->box.box_p[0]) && (kept_box->box.box_p[1] > other_box->box.box_p[1]) && (kept_box->box.box_p[2] < other_box->box.box_p[2]) && (kept_box->box.box_p[3] < other_box->box.box_p[3])) // kept_box contains other_box || ((kept_box->box.box_p[0] < other_box->box.box_p[0]) && (kept_box->box.box_p[1] < other_box->box.box_p[1]) && (kept_box->box.box_p[2] > other_box->box.box_p[2]) && (kept_box->box.box_p[3] > other_box->box.box_p[3]))) // supress { num_supressed++; prev->next = other_box->next; other_box = other_box->next; continue; } box_t inter_box; inter_box.box_p[0] = DL_IMAGE_MAX(kept_box->box.box_p[0], other_box->box.box_p[0]); inter_box.box_p[1] = DL_IMAGE_MAX(kept_box->box.box_p[1], other_box->box.box_p[1]); inter_box.box_p[2] = DL_IMAGE_MIN(kept_box->box.box_p[2], other_box->box.box_p[2]); inter_box.box_p[3] = DL_IMAGE_MIN(kept_box->box.box_p[3], other_box->box.box_p[3]); fptp_t inter_w, inter_h; image_get_width_and_height(&inter_box, &inter_w, &inter_h); if (inter_w > 0 && inter_h > 0) { if (!same_area) { image_get_area(&(kept_box->box), &kept_box_area); image_get_area(&(other_box->box), &other_box_area); } fptp_t inter_area = inter_w * inter_h; fptp_t iou = inter_area / (kept_box_area + other_box_area - inter_area); if (iou > nms_threshold) { num_supressed++; // Delete duplicated box // Here we cannot free a single box, because these boxes are allocated by calloc, we need to free all the calloced memory together. prev->next = other_box->next; other_box = other_box->next; continue; } } prev = other_box; other_box = other_box->next; } kept_box = kept_box->next; } image_list->len -= num_supressed; }/*}}}*/ void transform_input_image (uint8_t *m, uint16_t *bmp, int count) {/*{{{*/ uc_t dst[24]; for (int x = 0; x < count; x += 8) { rgb565_to_888(*bmp++, dst); rgb565_to_888(*bmp++, dst + 3); rgb565_to_888(*bmp++, dst + 6); rgb565_to_888(*bmp++, dst + 9); rgb565_to_888(*bmp++, dst + 12); rgb565_to_888(*bmp++, dst + 15); rgb565_to_888(*bmp++, dst + 18); rgb565_to_888(*bmp++, dst + 21); memcpy(m + x * 3, dst, 24 * sizeof(uint8_t)); } }/*}}}*/ void transform_output_image (uint16_t *bmp, uint8_t *m, int count) {/*{{{*/ for (int x = 0; x < count; x++) { rgb888_to_565(bmp, m[2], m[1], m[0]); bmp++; m += 3; } }/*}}}*/ void draw_rectangle(uint16_t *buf, box_array_t *boxes, int width) {/*{{{*/ uint16_t p[14]; for (int i = 0; i < boxes->len; i++) { // rectangle box for (int j = 0; j < 4; j++) p[j] = (uint16_t)boxes->box[i].box_p[j]; // landmark for (int j = 0; j < 10; j++) p[j + 4] = (uint16_t)boxes->landmark[i].landmark_p[j]; if ((p[2] < p[0]) || (p[3] < p[1])) return; #define GREEN RGB565_MASK_GREEN #define RED RGB565_MASK_GREEN // rectangle box for (int w = p[0]; w < p[2] + 1; w++) { int x1 = (p[1] * width + w); int x2 = (p[3] * width + w); buf[x1] = GREEN; // Green buf[x2] = GREEN; } for (int h = p[1]; h < p[3] + 1; h++) { int y1 = (h * width + p[0]); int y2 = (h * width + p[2]); buf[y1] = GREEN; // Green buf[y2] = GREEN; } // landmark for (int j = 0; j < 10; j+=2) { int x = p[j + 5] * width + p[j + 4]; buf[x] = RED; // Red buf[x + 1] = RED; buf[x + 2] = RED; buf[width + x] = RED; // Red buf[width + x + 1] = RED; buf[width + x + 2] = RED; buf[2 * width + x] = RED; // Red buf[2 * width + x + 1] = RED; buf[2 * width + x + 2] = RED; } } }/*}}}*/