// Copyright 2010-2021 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32S3 #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "esp_heap_caps.h" #include "esp_log.h" #include "esp32s3/rom/lldesc.h" #include "esp32s3/rom/gpio.h" #include "driver/gpio.h" #include "soc/gpio_periph.h" #include "soc/system_reg.h" #include "soc/lcd_cam_struct.h" #include "soc/lcd_cam_reg.h" #include "soc/gdma_struct.h" #include "soc/gdma_periph.h" #include "soc/gdma_reg.h" #include "i2s_lcd_driver.h" static const char *TAG = "ESP32S3_LCD"; #define LCD_CHECK(a, str, ret) if (!(a)) { \ ESP_LOGE(TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret); \ } #define LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE (4000) #if (ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)) #define ets_delay_us esp_rom_delay_us #define portTICK_RATE_MS portTICK_PERIOD_MS #endif typedef struct { uint32_t dma_buffer_size; uint32_t dma_half_buffer_size; uint32_t dma_node_buffer_size; uint32_t dma_node_cnt; uint32_t dma_half_node_cnt; lldesc_t *dma; uint8_t *dma_buffer; QueueHandle_t event_queue; uint8_t width; bool swap_data; uint8_t dma_num; intr_handle_t dma_out_intr_handle; } lcd_cam_obj_t; typedef struct { int rs_io_num; lcd_cam_obj_t *i2s_lcd_obj; SemaphoreHandle_t mutex; } i2s_lcd_driver_t; static void IRAM_ATTR dma_isr(void *arg) { BaseType_t woken = pdFALSE; lcd_cam_obj_t *lcd_cam_obj = (lcd_cam_obj_t *)arg; uint32_t out_status = GDMA.channel[lcd_cam_obj->dma_num].out.int_st.val; if (out_status & GDMA_OUT_EOF_CH0_INT_ST) { GDMA.channel[lcd_cam_obj->dma_num].out.int_clr.val = GDMA_OUT_EOF_CH0_INT_ST; xQueueSendFromISR(lcd_cam_obj->event_queue, &out_status, &woken); } if (woken == pdTRUE) { portYIELD_FROM_ISR(); } } static void lcd_dma_set_int(lcd_cam_obj_t *lcd_cam_obj) { // Generate a data DMA linked list for (int x = 0; x < lcd_cam_obj->dma_node_cnt; x++) { lcd_cam_obj->dma[x].size = lcd_cam_obj->dma_node_buffer_size; lcd_cam_obj->dma[x].length = lcd_cam_obj->dma_node_buffer_size; lcd_cam_obj->dma[x].buf = (lcd_cam_obj->dma_buffer + lcd_cam_obj->dma_node_buffer_size * x); lcd_cam_obj->dma[x].eof = !((x + 1) % lcd_cam_obj->dma_half_node_cnt); lcd_cam_obj->dma[x].empty = (uint32_t)&lcd_cam_obj->dma[(x + 1) % lcd_cam_obj->dma_node_cnt]; } lcd_cam_obj->dma[lcd_cam_obj->dma_half_node_cnt - 1].empty = (uint32_t)NULL; lcd_cam_obj->dma[lcd_cam_obj->dma_node_cnt - 1].empty = (uint32_t)NULL; } static void lcd_dma_set_left(lcd_cam_obj_t *lcd_cam_obj, int pos, size_t len) { int end_pos = 0, size = 0; // Processing data length is an integer multiple of lcd_cam_obj->lcd.dma_node_buffer_size if (len % lcd_cam_obj->dma_node_buffer_size) { end_pos = (pos % 2) * lcd_cam_obj->dma_half_node_cnt + len / lcd_cam_obj->dma_node_buffer_size; size = len % lcd_cam_obj->dma_node_buffer_size; } else { end_pos = (pos % 2) * lcd_cam_obj->dma_half_node_cnt + len / lcd_cam_obj->dma_node_buffer_size - 1; size = lcd_cam_obj->dma_node_buffer_size; } // Process the tail node to make it a DMA tail lcd_cam_obj->dma[end_pos].size = size; lcd_cam_obj->dma[end_pos].length = size; lcd_cam_obj->dma[end_pos].eof = 1; lcd_cam_obj->dma[end_pos].empty = (uint32_t)NULL; } static void lcd_start(uint32_t dma_num, uint32_t addr, size_t len) { while (LCD_CAM.lcd_user.lcd_start); LCD_CAM.lcd_user.lcd_reset = 1; LCD_CAM.lcd_user.lcd_reset = 0; LCD_CAM.lcd_misc.lcd_afifo_reset = 1; LCD_CAM.lcd_misc.lcd_afifo_reset = 0; while (GDMA.channel[dma_num].out.link.start); GDMA.channel[dma_num].out.conf0.val = 0; GDMA.channel[dma_num].out.conf1.val = 0; GDMA.channel[dma_num].out.int_clr.val = ~0; GDMA.channel[dma_num].out.int_ena.val = 0; GDMA.channel[dma_num].out.conf0.out_rst = 1; GDMA.channel[dma_num].out.conf0.out_rst = 0; GDMA.channel[dma_num].out.conf0.outdscr_burst_en = 1; GDMA.channel[dma_num].out.conf0.out_data_burst_en = 1; GDMA.channel[dma_num].out.peri_sel.sel = 5; GDMA.channel[dma_num].out.pri.tx_pri = 1; GDMA.channel[dma_num].out.int_ena.out_eof = 1; GDMA.channel[dma_num].out.link.addr = addr; GDMA.channel[dma_num].out.link.start = 1; ets_delay_us(1); LCD_CAM.lcd_user.lcd_update = 1; LCD_CAM.lcd_user.lcd_start = 1; } static void lcd_write_data(lcd_cam_obj_t *lcd_cam_obj, const uint8_t *data, size_t len) { int event = 0; int x = 0, left = 0, cnt = 0; if (len <= 0) { ESP_LOGE(TAG, "wrong len!"); return; } lcd_dma_set_int(lcd_cam_obj); uint32_t half_buffer_size = lcd_cam_obj->dma_half_buffer_size; cnt = len / half_buffer_size; // Start signal xQueueSend(lcd_cam_obj->event_queue, &event, 0); // Process a complete piece of data, ping-pong operation for (x = 0; x < cnt; x++) { uint8_t *out = (uint8_t *)lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt].buf; const uint8_t *in = data; if (lcd_cam_obj->swap_data) { LCD_CAM.lcd_user.lcd_8bits_order = 1; memcpy(out, in, half_buffer_size); } else { LCD_CAM.lcd_user.lcd_8bits_order = 0; memcpy(out, in, half_buffer_size); } data += half_buffer_size; xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY); lcd_start(lcd_cam_obj->dma_num, ((uint32_t)&lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt]) & 0xfffff, half_buffer_size); } left = len % half_buffer_size; // Process remaining incomplete segment data if (left) { uint8_t *out = (uint8_t *)lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt].buf; const uint8_t *in = data; cnt = left - left % 2; if (cnt) { if (lcd_cam_obj->swap_data) { LCD_CAM.lcd_user.lcd_8bits_order = 1; memcpy(out, in, cnt); } else { LCD_CAM.lcd_user.lcd_8bits_order = 0; memcpy(out, in, cnt); } } if (left % 2) { LCD_CAM.lcd_user.lcd_8bits_order = 0; out[cnt] = in[cnt]; } lcd_dma_set_left(lcd_cam_obj, x, left); xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY); lcd_start(lcd_cam_obj->dma_num, ((uint32_t)&lcd_cam_obj->dma[(x % 2) * lcd_cam_obj->dma_half_node_cnt]) & 0xfffff, left); } xQueueReceive(lcd_cam_obj->event_queue, (void *)&event, portMAX_DELAY); } static esp_err_t lcd_cam_config(const i2s_lcd_config_t *config, uint32_t dma_num) { GDMA.channel[dma_num].out.conf0.val = 0; GDMA.channel[dma_num].out.conf1.val = 0; GDMA.channel[dma_num].in.conf0.val = 0; GDMA.channel[dma_num].in.conf1.val = 0; GDMA.channel[dma_num].out.int_clr.val = ~0; GDMA.channel[dma_num].out.int_ena.val = 0; GDMA.channel[dma_num].in.int_clr.val = ~0; GDMA.channel[dma_num].in.int_ena.val = 0; LCD_CAM.lcd_clock.val = 0; LCD_CAM.lcd_clock.clk_en = 1; LCD_CAM.lcd_clock.lcd_clk_sel = 3; LCD_CAM.lcd_clock.lcd_clkm_div_b = 0; LCD_CAM.lcd_clock.lcd_clkm_div_a = 10; LCD_CAM.lcd_clock.lcd_clkm_div_num = 2; LCD_CAM.lcd_clock.lcd_clkcnt_n = 80000000 / config->clk_freq - 1; LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 0; LCD_CAM.lcd_clock.lcd_ck_idle_edge = 1; // After lcd_clk_equ_sysclk is set to 1, this bit has no effect LCD_CAM.lcd_clock.lcd_ck_out_edge = 0; // After lcd_clk_equ_sysclk is set to 1, this bit has no effect LCD_CAM.lcd_user.val = 0; LCD_CAM.lcd_user.lcd_2byte_en = (config->data_width == 16) ? 1 : 0; LCD_CAM.lcd_user.lcd_byte_order = 0; LCD_CAM.lcd_user.lcd_bit_order = 0; LCD_CAM.lcd_user.lcd_cmd = 0; // FSM CMD phase LCD_CAM.lcd_user.lcd_cmd_2_cycle_en = 0; // 2 cycle command LCD_CAM.lcd_user.lcd_dout = 1; // FSM DOUT phase LCD_CAM.lcd_user.lcd_dout_cyclelen = 2 - 1; LCD_CAM.lcd_user.lcd_8bits_order = 0; LCD_CAM.lcd_user.lcd_always_out_en = 1; LCD_CAM.lcd_misc.val = 0; LCD_CAM.lcd_misc.lcd_afifo_threshold_num = 11; LCD_CAM.lcd_misc.lcd_vfk_cyclelen = 3; LCD_CAM.lcd_misc.lcd_vbk_cyclelen = 0; LCD_CAM.lcd_misc.lcd_cd_idle_edge = 1; // idle edge of CD is set to 0 LCD_CAM.lcd_misc.lcd_cd_cmd_set = 1; LCD_CAM.lcd_misc.lcd_cd_dummy_set = 0; LCD_CAM.lcd_misc.lcd_cd_data_set = 0; // change when DOUT start LCD_CAM.lcd_misc.lcd_bk_en = 1; LCD_CAM.lcd_misc.lcd_afifo_reset = 1; LCD_CAM.lcd_misc.lcd_afifo_reset = 0; LCD_CAM.lcd_ctrl.val = 0; LCD_CAM.lcd_ctrl.lcd_rgb_mode_en = 0; LCD_CAM.lcd_cmd_val.val = 0; // write command LCD_CAM.lcd_user.lcd_update = 1; GDMA.channel[dma_num].out.conf0.out_rst = 1; GDMA.channel[dma_num].out.conf0.out_rst = 0; GDMA.channel[dma_num].out.conf0.outdscr_burst_en = 1; GDMA.channel[dma_num].out.conf0.out_data_burst_en = 1; GDMA.channel[dma_num].out.peri_sel.sel = (config->data_width == 1) ? 1 : 5; GDMA.channel[dma_num].out.pri.tx_pri = 1; GDMA.channel[dma_num].out.int_ena.out_eof = 1; return ESP_OK; } static void lcd_set_pin(const i2s_lcd_config_t *config) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_num_wr], PIN_FUNC_GPIO); gpio_set_direction(config->pin_num_wr, GPIO_MODE_OUTPUT); gpio_set_pull_mode(config->pin_num_wr, GPIO_FLOATING); gpio_matrix_out(config->pin_num_wr, LCD_PCLK_IDX, false, false); for (int i = 0; i < config->data_width; i++) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_data_num[i]], PIN_FUNC_GPIO); gpio_set_direction(config->pin_data_num[i], GPIO_MODE_OUTPUT); gpio_set_pull_mode(config->pin_data_num[i], GPIO_FLOATING); gpio_matrix_out(config->pin_data_num[i], LCD_DATA_OUT0_IDX + i, false, false); } } static esp_err_t lcd_dma_config(lcd_cam_obj_t *lcd_cam_obj, const i2s_lcd_config_t *config) { int cnt = 0; if (LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE % 2 != 0) { ESP_LOGE(TAG, "need 2-byte aligned data length"); return ESP_FAIL; } if (config->buffer_size >= LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE * 2) { lcd_cam_obj->dma_node_buffer_size = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE; for (cnt = 0; cnt < config->buffer_size - 8; cnt++) { // Find a buffer size that can divide dma_size if ((config->buffer_size - cnt) % (lcd_cam_obj->dma_node_buffer_size * 2) == 0) { break; } } lcd_cam_obj->dma_buffer_size = config->buffer_size - cnt; } else { lcd_cam_obj->dma_node_buffer_size = config->buffer_size / 2; lcd_cam_obj->dma_buffer_size = lcd_cam_obj->dma_node_buffer_size * 2; } lcd_cam_obj->dma_half_buffer_size = lcd_cam_obj->dma_buffer_size / 2; lcd_cam_obj->dma_node_cnt = (lcd_cam_obj->dma_buffer_size) / lcd_cam_obj->dma_node_buffer_size; // Number of DMA nodes lcd_cam_obj->dma_half_node_cnt = lcd_cam_obj->dma_node_cnt / 2; ESP_LOGI(TAG, "lcd_buffer_size: %"PRIu32", lcd_dma_size: %"PRIu32", lcd_dma_node_cnt: %"PRIu32"", lcd_cam_obj->dma_buffer_size, lcd_cam_obj->dma_node_buffer_size, lcd_cam_obj->dma_node_cnt); lcd_cam_obj->dma = (lldesc_t *)heap_caps_malloc(lcd_cam_obj->dma_node_cnt * sizeof(lldesc_t), MALLOC_CAP_DMA); lcd_cam_obj->dma_buffer = (uint8_t *)heap_caps_malloc(lcd_cam_obj->dma_buffer_size * sizeof(uint8_t), MALLOC_CAP_DMA); return ESP_OK; } esp_err_t lcd_cam_deinit(i2s_lcd_driver_t *drv) { if (!drv->i2s_lcd_obj) { return ESP_FAIL; } if (drv->i2s_lcd_obj->event_queue) { vQueueDelete(drv->i2s_lcd_obj->event_queue); } if (drv->i2s_lcd_obj->dma) { free(drv->i2s_lcd_obj->dma); } if (drv->i2s_lcd_obj->dma_buffer) { free(drv->i2s_lcd_obj->dma_buffer); } if (drv->i2s_lcd_obj->dma_out_intr_handle) { esp_intr_free(drv->i2s_lcd_obj->dma_out_intr_handle); } GDMA.channel[drv->i2s_lcd_obj->dma_num].out.link.start = 0x0; free(drv->i2s_lcd_obj); drv->i2s_lcd_obj = NULL; return ESP_OK; } static esp_err_t lcd_cam_init(i2s_lcd_driver_t *drv, const i2s_lcd_config_t *config) { esp_err_t ret = ESP_OK; lcd_cam_obj_t *lcd_cam_obj = (lcd_cam_obj_t *)heap_caps_calloc(1, sizeof(lcd_cam_obj_t), MALLOC_CAP_DMA); if (lcd_cam_obj == NULL) { ESP_LOGE(TAG, "lcd_cam object malloc error"); return ESP_ERR_NO_MEM; } drv->i2s_lcd_obj = lcd_cam_obj; //Enable LCD_CAM periph if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN) == 0) { REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN); REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN); REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST); REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST); } if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN) == 0) { REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN); REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN); REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST); REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST); } for (int x = SOC_GDMA_PAIRS_PER_GROUP - 1; x >= 0; x--) { if (GDMA.channel[x].out.link.start == 0x0) { lcd_cam_obj->dma_num = x; break; } if (x == SOC_GDMA_PAIRS_PER_GROUP - 1) { ESP_LOGE(TAG, "DMA error"); lcd_cam_deinit(drv); return ESP_FAIL; } } ret |= lcd_cam_config(config, lcd_cam_obj->dma_num); if (ret != ESP_OK) { ESP_LOGE(TAG, "lcd_cam config fail!"); lcd_cam_deinit(drv); return ESP_FAIL; } lcd_set_pin(config); ret |= lcd_dma_config(lcd_cam_obj, config); if (ret != ESP_OK) { ESP_LOGE(TAG, "lcd config fail!"); lcd_cam_deinit(drv); return ESP_FAIL; } lcd_cam_obj->event_queue = xQueueCreate(1, sizeof(int)); lcd_cam_obj->width = config->data_width; lcd_cam_obj->swap_data = config->swap_data; if (lcd_cam_obj->event_queue == NULL) { ESP_LOGE(TAG, "lcd config fail!"); lcd_cam_deinit(drv); return ESP_FAIL; } ret |= esp_intr_alloc_intrstatus(gdma_periph_signals.groups[0].pairs[lcd_cam_obj->dma_num].tx_irq_id, ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM, (uint32_t)&GDMA.channel[lcd_cam_obj->dma_num].out.int_st, GDMA_OUT_EOF_CH0_INT_ST, dma_isr, lcd_cam_obj, &lcd_cam_obj->dma_out_intr_handle); if (ret != ESP_OK) { ESP_LOGE(TAG, "lcd_cam intr alloc fail!"); lcd_cam_deinit(drv); return ESP_FAIL; } ESP_LOGI(TAG, "lcd init ok"); return ESP_OK; } /**< Public functions */ i2s_lcd_handle_t i2s_lcd_driver_init(const i2s_lcd_config_t *config) { LCD_CHECK(NULL != config, "config pointer invalid", NULL); LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_num_wr), "GPIO WR invalid", NULL); LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_num_rs), "GPIO RS invalid", NULL); LCD_CHECK(config->data_width > 0 && config->data_width <= 16, "Bit width out of range", NULL); LCD_CHECK(0 == (config->data_width % 8), "Bit width must be a multiple of 8", NULL); uint64_t pin_mask = 0; for (size_t i = 0; i < config->data_width; i++) { uint64_t mask = 1ULL << config->pin_data_num[i]; LCD_CHECK(!(pin_mask & mask), "Data bus GPIO has a duplicate", NULL); LCD_CHECK(GPIO_IS_VALID_GPIO(config->pin_data_num[i]), "Data bus gpio invalid", NULL); pin_mask |= mask; } i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)heap_caps_malloc(sizeof(i2s_lcd_driver_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); LCD_CHECK(NULL != i2s_lcd_drv, "Error malloc handle of i2s lcd driver", NULL); esp_err_t ret = lcd_cam_init(i2s_lcd_drv, config); if (ESP_OK != ret) { ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "i2s lcd driver initialize failed"); heap_caps_free(i2s_lcd_drv); return NULL; } i2s_lcd_drv->mutex = xSemaphoreCreateMutex(); if (i2s_lcd_drv->mutex == NULL) { ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "lcd create mutex failed"); lcd_cam_deinit(i2s_lcd_drv); heap_caps_free(i2s_lcd_drv); return NULL; } if (config->pin_num_cs >= 0) { gpio_pad_select_gpio(config->pin_num_cs); gpio_set_direction(config->pin_num_cs, GPIO_MODE_OUTPUT); gpio_set_level(config->pin_num_cs, 0); } gpio_pad_select_gpio(config->pin_num_rs); gpio_set_direction(config->pin_num_rs, GPIO_MODE_OUTPUT); gpio_set_level(config->pin_num_rs, LCD_DATA_LEV); i2s_lcd_drv->rs_io_num = config->pin_num_rs; return (i2s_lcd_handle_t)i2s_lcd_drv; } esp_err_t i2s_lcd_driver_deinit(i2s_lcd_handle_t handle) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); lcd_cam_deinit(i2s_lcd_drv); vSemaphoreDelete(i2s_lcd_drv->mutex); heap_caps_free(handle); return ESP_OK; } esp_err_t i2s_lcd_write_data(i2s_lcd_handle_t handle, uint16_t data) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&data, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1); return ESP_OK; } esp_err_t i2s_lcd_write_cmd(i2s_lcd_handle_t handle, uint16_t cmd) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_CMD_LEV); lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&cmd, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1); gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_DATA_LEV); return ESP_OK; } esp_err_t i2s_lcd_write_command(i2s_lcd_handle_t handle, const uint8_t *cmd, uint32_t length) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_CMD_LEV); lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, cmd, length); gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_DATA_LEV); return ESP_OK; } esp_err_t i2s_lcd_write(i2s_lcd_handle_t handle, const uint8_t *data, uint32_t length) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); lcd_write_data(i2s_lcd_drv->i2s_lcd_obj, data, length); return ESP_OK; } esp_err_t i2s_lcd_acquire(i2s_lcd_handle_t handle) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); BaseType_t ret = xSemaphoreTake(i2s_lcd_drv->mutex, portMAX_DELAY); LCD_CHECK(pdTRUE == ret, "Take semaphore failed", ESP_FAIL); return ESP_OK; } esp_err_t i2s_lcd_release(i2s_lcd_handle_t handle) { i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle; LCD_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG); BaseType_t ret = xSemaphoreGive(i2s_lcd_drv->mutex); LCD_CHECK(pdTRUE == ret, "Give semaphore failed", ESP_FAIL); return ESP_OK; } #endif