esp-who/components/bus/i2s_lcd_esp32_driver.c

597 lines
22 KiB
C

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_heap_caps.h"
#include "esp32/rom/lldesc.h"
#include "soc/dport_access.h"
#include "soc/dport_reg.h"
#include "soc/i2s_struct.h"
#include "hal/gpio_ll.h"
#include "esp_log.h"
#include "i2s_lcd_driver.h"
static const char *TAG = "ESP32_I2S_LCD";
#define I2S_CHECK(a, str, ret) if (!(a)) { \
ESP_LOGE(TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret); \
}
#define LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE (4000) // 4-byte aligned
#define LCD_DATA_MAX_WIDTH (24) /*!< Maximum width of LCD data bus */
typedef struct {
uint32_t dma_buffer_size;
uint32_t dma_half_buffer_size;
uint32_t dma_node_buffer_size;
uint32_t dma_node_cnt;
uint32_t dma_half_node_cnt;
lldesc_t *dma;
uint8_t *dma_buffer;
QueueHandle_t event_queue;
uint8_t width;
bool swap_data;
intr_handle_t lcd_cam_intr_handle;
i2s_dev_t *i2s_dev;
} i2s_lcd_obj_t;
typedef struct {
void (*i2s_write_data_func)(i2s_lcd_obj_t *i2s_lcd_obj, uint8_t *data, size_t len);
int rs_io_num;
i2s_lcd_obj_t *i2s_lcd_obj;
SemaphoreHandle_t mutex;
} i2s_lcd_driver_t;
static void IRAM_ATTR i2s_isr(void *arg)
{
BaseType_t HPTaskAwoken = pdFALSE;
i2s_lcd_obj_t *i2s_lcd_obj = (i2s_lcd_obj_t *)arg;
i2s_dev_t *i2s_dev = i2s_lcd_obj->i2s_dev;
typeof(i2s_dev->int_st) status = i2s_dev->int_st;
i2s_dev->int_clr.val = status.val;
if (status.val == 0) {
return;
}
if (status.out_eof) {
xQueueSendFromISR(i2s_lcd_obj->event_queue, (void *)&status.val, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static void lcd_dma_set_int(i2s_lcd_obj_t *i2s_lcd_obj)
{
// Generate a data DMA linked list
for (int x = 0; x < i2s_lcd_obj->dma_node_cnt; x++) {
i2s_lcd_obj->dma[x].size = i2s_lcd_obj->dma_node_buffer_size;
i2s_lcd_obj->dma[x].length = i2s_lcd_obj->dma_node_buffer_size;
i2s_lcd_obj->dma[x].buf = (i2s_lcd_obj->dma_buffer + i2s_lcd_obj->dma_node_buffer_size * x);
i2s_lcd_obj->dma[x].eof = !((x + 1) % i2s_lcd_obj->dma_half_node_cnt);
i2s_lcd_obj->dma[x].empty = (uint32_t)&i2s_lcd_obj->dma[(x + 1) % i2s_lcd_obj->dma_node_cnt];
}
i2s_lcd_obj->dma[i2s_lcd_obj->dma_half_node_cnt - 1].empty = (uint32_t)NULL;
i2s_lcd_obj->dma[i2s_lcd_obj->dma_node_cnt - 1].empty = (uint32_t)NULL;
}
static void lcd_dma_set_left(i2s_lcd_obj_t *i2s_lcd_obj, int pos, size_t len)
{
int end_pos = 0, size = 0;
// Processing data length is an integer multiple of i2s_lcd_obj->dma_node_buffer_size
if (len % i2s_lcd_obj->dma_node_buffer_size) {
end_pos = (pos % 2) * i2s_lcd_obj->dma_half_node_cnt + len / i2s_lcd_obj->dma_node_buffer_size;
size = len % i2s_lcd_obj->dma_node_buffer_size;
} else {
end_pos = (pos % 2) * i2s_lcd_obj->dma_half_node_cnt + len / i2s_lcd_obj->dma_node_buffer_size - 1;
size = i2s_lcd_obj->dma_node_buffer_size;
}
// Process the tail node to make it a DMA tail
i2s_lcd_obj->dma[end_pos].size = size;
i2s_lcd_obj->dma[end_pos].length = size;
i2s_lcd_obj->dma[end_pos].eof = 1;
i2s_lcd_obj->dma[end_pos].empty = (uint32_t)NULL;
}
static void lcd_i2s_start(i2s_dev_t *i2s_dev, uint8_t fifo_mode, uint32_t addr, size_t len)
{
while (!i2s_dev->state.tx_idle);
i2s_dev->fifo_conf.tx_fifo_mod = fifo_mode;
i2s_dev->conf.tx_start = 0;
i2s_dev->conf.tx_reset = 1;
i2s_dev->conf.tx_reset = 0;
i2s_dev->lc_conf.out_rst = 1;
i2s_dev->lc_conf.out_rst = 0;
i2s_dev->conf.tx_fifo_reset = 1;
i2s_dev->conf.tx_fifo_reset = 0;
i2s_dev->out_link.addr = addr;
i2s_dev->out_link.start = 1;
ets_delay_us(1);
i2s_dev->conf.tx_start = 1;
}
static void i2s_write_8bit_data(i2s_lcd_obj_t *i2s_lcd_obj, uint8_t *data, size_t len)
{
int event = 0;
int x = 0, y = 0, left = 0, cnt = 0;
if (len <= 0) {
ESP_LOGE(TAG, "wrong len!");
return;
}
len = len * 2;
lcd_dma_set_int(i2s_lcd_obj);
uint8_t fifo_mode = 1;
// Start signal
xQueueSend(i2s_lcd_obj->event_queue, &event, 0);
cnt = len / i2s_lcd_obj->dma_half_buffer_size;
// Process a complete piece of data, ping-pong operation
for (x = 0; x < cnt; x++) {
uint8_t *out = (uint8_t *)i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt].buf;
uint8_t *in = data;
if (!i2s_lcd_obj->swap_data) { // data will be swapped when fifo_mode=1, so negate the lcd.swap_data
for (y = 0; y < i2s_lcd_obj->dma_half_buffer_size; y += 4) {
out[y + 3] = in[(y >> 1) + 0];
out[y + 1] = in[(y >> 1) + 1];
}
} else {
for (y = 0; y < i2s_lcd_obj->dma_half_buffer_size; y += 4) {
out[y + 1] = in[(y >> 1) + 0];
out[y + 3] = in[(y >> 1) + 1];
}
}
data += i2s_lcd_obj->dma_half_buffer_size >> 1;
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_i2s_start(i2s_lcd_obj->i2s_dev, fifo_mode, ((uint32_t)&i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt]) & 0xfffff, i2s_lcd_obj->dma_half_buffer_size);
}
left = len % i2s_lcd_obj->dma_half_buffer_size;
// Process remaining incomplete segment data
while (left) {
uint8_t *out = (uint8_t *)i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt].buf;
uint8_t *in = data;
if (left > 2) {
cnt = left - left % 4;
left = left % 4;
data += cnt >> 1;
if (!i2s_lcd_obj->swap_data) { // data will be swapped when fifo_mode=1, so negate the lcd.swap_data
for (y = 0; y < cnt; y += 4) {
out[y + 3] = in[(y >> 1) + 0];
out[y + 1] = in[(y >> 1) + 1];
}
} else {
for (y = 0; y < cnt; y += 4) {
out[y + 1] = in[(y >> 1) + 0];
out[y + 3] = in[(y >> 1) + 1];
}
}
} else {
cnt = 4;
left = 0;
fifo_mode = 3;
out[3] = in[0];
}
// printf("[");
// for (size_t i = 0; i < cnt; i++) {
// printf("%02x, ", out[i]);
// } printf("]\n");
lcd_dma_set_left(i2s_lcd_obj, x, cnt);
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_i2s_start(i2s_lcd_obj->i2s_dev, fifo_mode, ((uint32_t)&i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt]) & 0xfffff, cnt);
x++;
}
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
}
static void i2s_write_16bit_data(i2s_lcd_obj_t *i2s_lcd_obj, uint8_t *data, size_t len)
{
int event = 0;
int x = 0, y = 0, left = 0, cnt = 0;
if (len <= 0 || len % 2 != 0) {
ESP_LOGE(TAG, "wrong len!");
return;
}
lcd_dma_set_int(i2s_lcd_obj);
uint8_t fifo_mode = 1;
// Start signal
xQueueSend(i2s_lcd_obj->event_queue, &event, 0);
cnt = len / i2s_lcd_obj->dma_half_buffer_size;
// Process a complete piece of data, ping-pong operation
for (x = 0; x < cnt; x++) {
uint8_t *out = (uint8_t *)i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt].buf;
uint8_t *in = data;
if (i2s_lcd_obj->swap_data) {
for (y = 0; y < i2s_lcd_obj->dma_half_buffer_size; y += 4) {
out[y + 3] = in[y + 0];
out[y + 2] = in[y + 1];
out[y + 1] = in[y + 2];
out[y + 0] = in[y + 3];
}
} else {
for (y = 0; y < i2s_lcd_obj->dma_half_buffer_size; y += 4) {
out[y + 2] = in[y + 0];
out[y + 3] = in[y + 1];
out[y + 0] = in[y + 2];
out[y + 1] = in[y + 3];
}
}
data += i2s_lcd_obj->dma_half_buffer_size;
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_i2s_start(i2s_lcd_obj->i2s_dev, fifo_mode, ((uint32_t)&i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt]) & 0xfffff, i2s_lcd_obj->dma_half_buffer_size);
}
left = len % i2s_lcd_obj->dma_half_buffer_size;
// Process remaining incomplete segment data
while (left) {
uint8_t *out = (uint8_t *)i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt].buf;
uint8_t *in = data;
if (left > 2) {
cnt = left - left % 4;
left = left % 4;
data += cnt;
if (i2s_lcd_obj->swap_data) {
for (y = 0; y < cnt; y += 4) {
out[y + 3] = in[y + 0];
out[y + 2] = in[y + 1];
out[y + 1] = in[y + 2];
out[y + 0] = in[y + 3];
}
} else {
for (y = 0; y < cnt; y += 4) {
out[y + 2] = in[y + 0];
out[y + 3] = in[y + 1];
out[y + 0] = in[y + 2];
out[y + 1] = in[y + 3];
}
}
} else {
cnt = 4;
left = 0;
fifo_mode = 3;
if (i2s_lcd_obj->swap_data) {
out[3] = in[0];
out[2] = in[1];
} else {
out[2] = in[0];
out[3] = in[1];
}
}
lcd_dma_set_left(i2s_lcd_obj, x, cnt);
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
lcd_i2s_start(i2s_lcd_obj->i2s_dev, fifo_mode, ((uint32_t)&i2s_lcd_obj->dma[(x % 2) * i2s_lcd_obj->dma_half_node_cnt]) & 0xfffff, cnt);
x++;
}
xQueueReceive(i2s_lcd_obj->event_queue, (void *)&event, portMAX_DELAY);
}
static esp_err_t i2s_lcd_reg_config(i2s_dev_t *i2s_dev, uint16_t data_width, uint32_t clk_freq)
{
// Configure the clock
i2s_dev->clkm_conf.clkm_div_num = 2; // 160MHz / 2 = 80MHz
i2s_dev->clkm_conf.clkm_div_b = 0;
i2s_dev->clkm_conf.clkm_div_a = 10;
i2s_dev->clkm_conf.clk_en = 1;
i2s_dev->conf.val = 0;
i2s_dev->fifo_conf.val = 0;
i2s_dev->fifo_conf.dscr_en = 1;
i2s_dev->conf2.lcd_en = 1;
i2s_dev->conf2.camera_en = 1;
i2s_dev->lc_conf.ahbm_fifo_rst = 1;
i2s_dev->lc_conf.ahbm_fifo_rst = 0;
i2s_dev->lc_conf.ahbm_rst = 1;
i2s_dev->lc_conf.ahbm_rst = 0;
i2s_dev->lc_conf.check_owner = 0;
i2s_dev->lc_conf.out_loop_test = 0;
i2s_dev->lc_conf.out_auto_wrback = 0;
i2s_dev->lc_conf.out_data_burst_en = 1;
i2s_dev->lc_conf.out_no_restart_clr = 0;
i2s_dev->lc_conf.indscr_burst_en = 0;
i2s_dev->lc_conf.out_eof_mode = 1;
i2s_dev->timing.val = 0;
i2s_dev->int_ena.val = 0;
i2s_dev->int_clr.val = ~0;
// Configure sampling rate
i2s_dev->sample_rate_conf.tx_bck_div_num = 40000000 / clk_freq; // Fws = Fbck / 2
i2s_dev->sample_rate_conf.tx_bits_mod = (data_width == 8) ? 0 : 1;
// Configuration data format
i2s_dev->conf.tx_start = 0;
i2s_dev->conf.tx_reset = 1;
i2s_dev->conf.tx_reset = 0;
i2s_dev->conf.tx_fifo_reset = 1;
i2s_dev->conf.tx_fifo_reset = 0;
i2s_dev->conf.tx_slave_mod = 0;
i2s_dev->conf.tx_right_first = 1; // Must be set to 1, otherwise the clock line will change during reset
i2s_dev->conf.tx_msb_right = 0;
i2s_dev->conf.tx_short_sync = 0;
i2s_dev->conf.tx_mono = 0;
i2s_dev->conf.tx_msb_shift = 0;
i2s_dev->conf1.tx_pcm_bypass = 1;
i2s_dev->conf1.tx_stop_en = 1;
i2s_dev->conf_chan.tx_chan_mod = 1;
i2s_dev->fifo_conf.tx_fifo_mod_force_en = 1;
i2s_dev->fifo_conf.tx_data_num = 32;
i2s_dev->fifo_conf.tx_fifo_mod = 1;
i2s_dev->lc_conf.out_rst = 1;
i2s_dev->lc_conf.out_rst = 0;
i2s_dev->int_ena.out_eof = 1;
return ESP_OK;
}
static esp_err_t lcd_set_pin(const i2s_lcd_config_t *config)
{
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_num_wr], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_num_wr, GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_num_wr, GPIO_FLOATING);
gpio_matrix_out(config->pin_num_wr, I2S0O_WS_OUT_IDX, true, false);
for (int i = 0; i < config->data_width; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_data_num[i]], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_data_num[i], GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_data_num[i], GPIO_FLOATING);
// High bit aligned, OUT23 is always the highest bit
gpio_matrix_out(config->pin_data_num[i], I2S0O_DATA_OUT0_IDX + (LCD_DATA_MAX_WIDTH - config->data_width) + i, false, false);
}
return ESP_OK;
}
static esp_err_t lcd_dma_config(i2s_lcd_obj_t *i2s_lcd_obj, uint32_t max_dma_buffer_size)
{
int cnt = 0;
if (LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE % 2 != 0) {
ESP_LOGE(TAG, "ESP32 only supports 2-byte aligned data length");
return ESP_FAIL;
}
if (max_dma_buffer_size >= LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE * 2) {
i2s_lcd_obj->dma_node_buffer_size = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE;
for (cnt = 0; cnt < max_dma_buffer_size - 8; cnt++) { // Find a buffer size that can divide dma_size
if ((max_dma_buffer_size - cnt) % (i2s_lcd_obj->dma_node_buffer_size * 2) == 0) {
break;
}
}
i2s_lcd_obj->dma_buffer_size = max_dma_buffer_size - cnt;
} else {
i2s_lcd_obj->dma_node_buffer_size = max_dma_buffer_size / 2;
i2s_lcd_obj->dma_buffer_size = i2s_lcd_obj->dma_node_buffer_size * 2;
}
i2s_lcd_obj->dma_half_buffer_size = i2s_lcd_obj->dma_buffer_size / 2;
i2s_lcd_obj->dma_node_cnt = (i2s_lcd_obj->dma_buffer_size) / i2s_lcd_obj->dma_node_buffer_size; // Number of DMA nodes
i2s_lcd_obj->dma_half_node_cnt = i2s_lcd_obj->dma_node_cnt / 2;
ESP_LOGI(TAG, "lcd_buffer_size: %d, lcd_dma_size: %d, lcd_dma_node_cnt: %d", i2s_lcd_obj->dma_buffer_size, i2s_lcd_obj->dma_node_buffer_size, i2s_lcd_obj->dma_node_cnt);
i2s_lcd_obj->dma = (lldesc_t *)heap_caps_calloc(i2s_lcd_obj->dma_node_cnt, sizeof(lldesc_t), MALLOC_CAP_DMA | MALLOC_CAP_8BIT);
i2s_lcd_obj->dma_buffer = (uint8_t *)heap_caps_calloc(i2s_lcd_obj->dma_buffer_size, sizeof(uint8_t), MALLOC_CAP_DMA | MALLOC_CAP_8BIT);
return ESP_OK;
}
esp_err_t lcd_cam_deinit(i2s_lcd_driver_t *drv)
{
if (!drv->i2s_lcd_obj) {
return ESP_FAIL;
}
if (drv->i2s_lcd_obj->event_queue) {
vQueueDelete(drv->i2s_lcd_obj->event_queue);
}
if (drv->i2s_lcd_obj->dma) {
heap_caps_free(drv->i2s_lcd_obj->dma);
}
if (drv->i2s_lcd_obj->dma_buffer) {
heap_caps_free(drv->i2s_lcd_obj->dma_buffer);
}
if (drv->i2s_lcd_obj->lcd_cam_intr_handle) {
esp_intr_free(drv->i2s_lcd_obj->lcd_cam_intr_handle);
}
heap_caps_free(drv->i2s_lcd_obj);
drv->i2s_lcd_obj = NULL;
return ESP_OK;
}
static esp_err_t lcd_cam_init(i2s_lcd_driver_t *drv, const i2s_lcd_config_t *config)
{
esp_err_t ret = ESP_OK;
i2s_lcd_obj_t *i2s_lcd_obj = (i2s_lcd_obj_t *)heap_caps_calloc(1, sizeof(i2s_lcd_obj_t), MALLOC_CAP_DMA);
if (i2s_lcd_obj == NULL) {
ESP_LOGE(TAG, "lcd_cam object malloc failed");
return ESP_ERR_NO_MEM;
}
drv->i2s_lcd_obj = i2s_lcd_obj;
if (I2S_NUM_0 == config->i2s_port) {
i2s_lcd_obj->i2s_dev = &I2S0;
periph_module_enable(PERIPH_I2S0_MODULE);
ESP_LOGI(TAG, "Enable I2S0");
} else if (I2S_NUM_1 == config->i2s_port) {
i2s_lcd_obj->i2s_dev = &I2S1;
periph_module_enable(PERIPH_I2S1_MODULE);
ESP_LOGI(TAG, "Enable I2S1");
} else {
ESP_LOGE(TAG, "Designated I2S peripheral not found");
}
do {
ret |= i2s_lcd_reg_config(i2s_lcd_obj->i2s_dev, config->data_width, config->clk_freq);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd_cam config fail!");
break;
}
ret |= lcd_set_pin(config);
ret |= lcd_dma_config(i2s_lcd_obj, config->buffer_size);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd config fail!");
break;
}
i2s_lcd_obj->event_queue = xQueueCreate(1, sizeof(int));
i2s_lcd_obj->width = config->data_width;
i2s_lcd_obj->swap_data = config->swap_data;;
if (i2s_lcd_obj->event_queue == NULL) {
ESP_LOGE(TAG, "lcd config fail!");
break;
}
if (I2S_NUM_0 == config->i2s_port) {
ret |= esp_intr_alloc(ETS_I2S0_INTR_SOURCE, ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM, i2s_isr, i2s_lcd_obj, &i2s_lcd_obj->lcd_cam_intr_handle);
} else if (I2S_NUM_1 == config->i2s_port) {
ret |= esp_intr_alloc(ETS_I2S1_INTR_SOURCE, ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM, i2s_isr, i2s_lcd_obj, &i2s_lcd_obj->lcd_cam_intr_handle);
}
if (ret != ESP_OK) {
ESP_LOGE(TAG, "lcd_cam intr alloc fail!");
break;
}
ESP_LOGI(TAG, "i2s lcd driver init ok");
return ESP_OK;
} while (0);
lcd_cam_deinit(drv);
return ESP_FAIL;
}
/**< Public functions */
i2s_lcd_handle_t i2s_lcd_driver_init(const i2s_lcd_config_t *config)
{
I2S_CHECK(NULL != config, "config pointer invalid", NULL);
I2S_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(config->pin_num_wr), "GPIO WR invalid", NULL);
I2S_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(config->pin_num_rs), "GPIO RS invalid", NULL);
I2S_CHECK(config->data_width > 0 && config->data_width <= 16, "Bit width out of range", NULL);
I2S_CHECK(0 == (config->data_width % 8), "Bit width must be a multiple of 8", NULL);
uint64_t pin_mask = 0;
for (size_t i = 0; i < config->data_width; i++) {
uint64_t mask = 1ULL << config->pin_data_num[i];
I2S_CHECK(!(pin_mask & mask), "Data bus GPIO has a duplicate", NULL);
I2S_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(config->pin_data_num[i]), "Data bus gpio invalid", NULL);
pin_mask |= mask;
}
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)heap_caps_malloc(sizeof(i2s_lcd_driver_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
I2S_CHECK(NULL != i2s_lcd_drv, "Error malloc handle of i2s lcd driver", NULL);
esp_err_t ret = lcd_cam_init(i2s_lcd_drv, config);
if (ESP_OK != ret) {
ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "i2s lcd driver initialize failed");
heap_caps_free(i2s_lcd_drv);
return NULL;
}
i2s_lcd_drv->mutex = xSemaphoreCreateMutex();
if (i2s_lcd_drv->mutex == NULL) {
ESP_LOGE(TAG, "%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, "lcd create mutex failed");
lcd_cam_deinit(i2s_lcd_drv);
heap_caps_free(i2s_lcd_drv);
return NULL;
}
if (8 == config->data_width) {
i2s_lcd_drv->i2s_write_data_func = i2s_write_8bit_data;
} else if (16 == config->data_width) {
i2s_lcd_drv->i2s_write_data_func = i2s_write_16bit_data;
}
if (config->pin_num_cs >= 0) {
gpio_pad_select_gpio(config->pin_num_cs);
gpio_set_direction(config->pin_num_cs, GPIO_MODE_OUTPUT);
gpio_set_level(config->pin_num_cs, 0);
}
gpio_pad_select_gpio(config->pin_num_rs);
gpio_set_direction(config->pin_num_rs, GPIO_MODE_OUTPUT);
i2s_lcd_drv->rs_io_num = config->pin_num_rs;
return (i2s_lcd_handle_t)i2s_lcd_drv;
}
esp_err_t i2s_lcd_driver_deinit(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
lcd_cam_deinit(i2s_lcd_drv);
vSemaphoreDelete(i2s_lcd_drv->mutex);
heap_caps_free(handle);
return ESP_OK;
}
esp_err_t i2s_lcd_write_data(i2s_lcd_handle_t handle, uint16_t data)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
i2s_lcd_drv->i2s_write_data_func(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&data, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1);
return ESP_OK;
}
esp_err_t i2s_lcd_write_cmd(i2s_lcd_handle_t handle, uint16_t cmd)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_CMD_LEV);
i2s_lcd_drv->i2s_write_data_func(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)&cmd, i2s_lcd_drv->i2s_lcd_obj->width == 16 ? 2 : 1);
gpio_set_level(i2s_lcd_drv->rs_io_num, LCD_DATA_LEV);
return ESP_OK;
}
esp_err_t i2s_lcd_write(i2s_lcd_handle_t handle, const uint8_t *data, uint32_t length)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
i2s_lcd_drv->i2s_write_data_func(i2s_lcd_drv->i2s_lcd_obj, (uint8_t *)data, length);
return ESP_OK;
}
esp_err_t i2s_lcd_acquire(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
BaseType_t ret = xSemaphoreTake(i2s_lcd_drv->mutex, portMAX_DELAY);
I2S_CHECK(pdTRUE == ret, "Take semaphore failed", ESP_FAIL);
return ESP_OK;
}
esp_err_t i2s_lcd_release(i2s_lcd_handle_t handle)
{
i2s_lcd_driver_t *i2s_lcd_drv = (i2s_lcd_driver_t *)handle;
I2S_CHECK(NULL != i2s_lcd_drv, "handle pointer invalid", ESP_ERR_INVALID_ARG);
BaseType_t ret = xSemaphoreGive(i2s_lcd_drv->mutex);
I2S_CHECK(pdTRUE == ret, "Give semaphore failed", ESP_FAIL);
return ESP_OK;
}
#endif // CONFIG_IDF_TARGET_ESP32